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Abstract. In recent years, prompting pre-trained visual-language (VL)
models has shown excellent generalization to various downstream tasks
in both natural and medical images. However, VL models are sensi-
tive to the choice of input text prompts, requiring careful selection of
templates. Moreover, prompt tuning in the weakly supervised/multiple-
instance (MIL) setting is fairly under-explored, especially in the field of
computational pathology. In this work, we present a novel prompt tuning
framework leveraging frozen VL encoders with (i) residual visual feature
adaptation, and (ii) text-based context prompt optimization for whole
slide image (WSI) level tasks i.e., classification. In contrast with ex-
isting approaches using variants of attention-based instance pooling for
slide-level representations, we propose synergistic prompt-based pool-
ing of multiple instances as the weighted sum of learnable-context and
slide features. By leveraging the mean learned-prompt vectors and pooled
slide features, our design facilitates different slide-level tasks. Extensive
experiments on public WSI benchmark datasets reveal significant gains
over existing prompting methods, including standard baseline multiple
instance learners.

Keywords: Histopathology · Multiple Instance Learning · Multi-Modal
Learning · Weakly Supervised Learning

1 Introduction

Automated whole slide images (WSI) analysis using machine learning has been
shown to mitigate tedious and laborious quantification, with the potential to
serve as a secondary reader in clinical workflows [7,9]. Despite this, algorithmic
solutions are hindered by the nature of WSIs i.e., extremely high resolution, stain
variations across disease types and limited labeling. To address this, weakly su-
pervised modeling of WSI with multiple instance learning (MIL) [1,5,16,19,23,25]
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has become a standard approach for different tasks owing to patch-based learning
to reduce compute heavy training, with instance pooling functions [11] adopted
to obtain the final slide-level representation. While successful, learning with noisy
labeled instances poses a challenge, especially in data-deficient settings. To solve
this, self-supervised learning within and across WSI patch features has been ex-
plored to enable better transferability across tissue types [3, 6, 24] but may not
scale to varied tissue types with limited samples.

Recently, the development of vision-language (VL) models [10,12,18,21] (e.g.,
CLIP) using image-text pairs can not only learn aligned representations, but also
enable improved zero-shot generalization on downstream tasks. As the models
are supervised by natural language, images can be classified in open-vocabulary
settings by placing the class name (e.g., “A photo of a [CLASS]”) in textual
form. Note that fine-tuning VL models on downstream tasks is difficult and
resource-intensive, and may damage learned features [14,26]. Thus, prompt tun-
ing [17,22] is introduced to provide domain-specific context for downstream tasks
e.g., Context Optimization (CoOp) [30], Conditional Context Optimization (Co-
CoOp) [29] and CoOp-GCE [27] enabled prompt tuning in CLIP by replacing
context-words with learnable vectors and image-conditioning, with the latter an
extension of CoOp for noisy learning. In more recent studies, unified prompt-
tuning in both visual and textual encoders [4,15] has been explored e.g., CLIP-
Adapter [8] introduces an alternative to prompting by fine-tuning with feature
adapters in either visual or language branches reporting notable gains over CoOp
variants.

In this work, we hypothesize that VL models can provide better separabil-
ity for WSI classification despite learning with limited/noisy samples. First, as
opposed to leveraging labeled samples with fine-tuning, prompt-tuning for WSI
requires additional modules to pool instances for efficient learning. Thus, we
propose to pool instances using learned context-vectors for improved instance-
slide-text collaborative learning i.e., we leverage K class-specific context vectors
initialized with the text-model’s special token (End Of Sequence: EOS) to weight
the contribution of each instance in a WSI bag to obtain the slide-level repre-
sentation. Second, inspired by the success of feature adaptation, we combine
instance adaptation with learnable-prompting to simultaneously exploit knowl-
edge learned in the VL model and new knowledge in the few-shot training exam-
ples. Final slide classification follows the standard similarity-based optimization,
except we employ the average of K learned prompt vectors for scoring. In the
context of this work, prompt tuning in MIL is fairly under-explored with limited
works [18,20,28]. As opposed to visual-only prompting in PromptMIL [28] and
using multiple prompt learning in Qu et al. [20], we explore a different design
for text-based prompting on few-shot samples with visual adaptation.

The main contributions of this paper are as follows: (i) We study a challeng-
ing yet meaningful setting for prompt tuning i.e., few-shot weakly supervised
classification in histology, and (ii) introduce a novel prompt tuning framework
using prompt optimization with context-driven instance pooling for slide-level
classification and highlight the benefit of instance feature adaptation for im-
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Fig. 1: Proposed method. For a given WSI, slide instances are fed to the
visual encoder, followed by visual adaptation via Av

ψ. Note that different colored
instances (purple/yellow) stem from different slides. On the other hand, the text-
encoder takes text prompt input concatenated with new K learnable prompts
per class. Before computing similarity scores, we perform instance-level pooling
using the learnable projected K prompt vectors to obtain a single slide vector,
and then use the mean class prompts for final slide-level prediction.

proved few-shot transfer. (iii) Extensive experiments and ablations on public
datasets demonstrate the generalizability of our approach, achieving improved
results in varying N -shot settings.

2 Method

Overview and Preliminaries. In this work, we consider a dataset of WSIsX =
{Xi}Ni=1 partitioned into non-overlapping patches Xi = {xi,j , j = 1, 2, . . . , ni}
with varying ni per WSI. Each Xi is associated with a slide-level label Yi =
{0, 1}, where i = {1, 2, . . . , N}, respectively. Based on the standard MIL assump-
tion [1], instances are associated with slide labels as follows: {yi = 0,∀(yij) = 0}
for negative slides, and {yi = 1,

∑
yij ≥ 1} when positive. This implies that

instances in negative slides are all considered negative, with at least one positive
instance for the rest. This assumption models the task as weakly supervised in
nature with noisy labeled instances, making learning non-trivial. In the context
of the few-shot setting, shot denotes the number of labeled slides per class i.e.,
N-shot pairs of positive and negative slides for training (e.g., 1,4,8,16 shots).
During inference, the complete testing set is employed for weakly supervised
classification.

Recent works have shown impressive results with vision-language (VL) mod-
els for few-shot learning. Here, we use the VL model PLIP [10], a fine-tuned
CLIP [21] model trained with publicly curated digital pathology specific image-
text pairs. CLIP-based frameworks comprise an image and text encoder based
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on ResNet-50/ViT and Transformer for text feature modeling and are trained
to align image and text features using a contrastive objective. The models also
have an inherent ability for zero-shot inference using text descriptions or fixed
prompts per category. Formally, let zv = fvθ (xi) be image features extracted
by the visual encoder and {zti}Ci=1 = f tϕ(wi) weight vectors from the text en-
coder, where C represents the number of classes derived from text descriptions
{wi} i.e. “An H&E image of [CLASS]” with [CLASS] replaced with “breast ade-
nocarcinoma”, “invasive ductal carcinoma” or “normal smooth mucosa”. The
probability for each category can be obtained following:

q(y = i | x) = exp (sim(zti, z
v)/τ)∑K

j=1 exp (sim(ztj , z
v)/τ)

, (1)

where τ is a learned temperature coefficient and sim(·) the cosine similarity.
Prompt Initialization. To achieve improved generalization on downstream
tasks with pre-trained VL-models without full fine-tuning, CoOp [30] alterna-
tively learns continuous vectors appended to a given category prompts initialized
as p = [P ]1, [P ]2, . . . , [P ]K , [CLASS], with each [P ]K ∈ Rdt a vector with same
dimension (dt) as word embeddings, and K the number of context tokens. Note
that only [P ] is optimized using the cross-entropy loss given probabilities via
Eq. (1). As pointed out by Lee et al. [15], learnable prompts may alter parts
of the original model via the attention mechanism i.e., all class and learnable
embeddings will interact and affect the representation. Herein, we initialize the
prompts as follows:

p = [f
t(0)
ϕ ; zti; {pi}Ki=1], (2)

where f
t(0)
ϕ ∈ Rdt denotes the special token embedding [EOS] in the text encoder

that acts as a feature aggregator. zti ∈ RNt×dt and pi ∈ Rdt denote the text
embeddings of lengthN t tokens and the ith learnable prompts withK number of
prompts per category, while dt is the word embedding dimension. In contrast to
CoOp which replaces token embeddings with learnable prompts, this mechanism
encodes the entire text and concatenates the learnable prompts. Following [15],
special tokens [EOS] used for K learnable prompts {pi}Ki=1 are initialized as

pi ∼ N (f
t(0)
ϕ , σ2I) with variance σ2. This avoids constant initialization, with

masked attention used during training to restrict attention flow from learnable
prompts at different layers of the text encoder. We denote ẑt as the final projected
text embedding of the K learned prompts i.e., {ẑt}Ki=1.
Instance Feature Adaptation. In our framework, while learning optimized
text-prompt features is crucial, we posit visual instance adaptation via Av

ψ can
further enhance performance alongside prompt-tuning, especially for few-shot
classification following Gao et al. [8]. In contrast to full fine-tuning, Av

ψ en-
ables to avoid over-fitting on a few samples by adopting residual connections to
dynamically combine existing pre-trained knowledge and that of the learnable
prompt vectors. Formally, given visual embeddings zv = fvθ (xi), two layers of
learnable linear transformations are integrated in Av

ψ to transform zv following:

Av
ψ(z

v) = ReLU(ReLU((zv)TW1)
TW2), (3)
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Algorithm 1 Proposed Method

Input: Pre-trained VL models {f tϕ,fvθ }, visual adapter Avψ, dataset D = {Xi, Yi}
1: Initialize prompts p. // Eq.(2)
2: for each batch in Dx do
3: {ẑti}Ki=1 = f tϕ(p) // prompt vectors
4: {zvi }Ni=1 = fvθ (Xi) // visual slide vectors
5: {ẑvi }Ni=1 ←− {zvi }Ni=1 // visual adaptation Eq.(4)
6: ẑvslide ←− [{ẑvi }Ni=1, {ẑti}Ki=1] // pooling Eq.(6)
7: ẑtmean ←− {ẑti}Ki=1 // prompt pooling Eq.(7)
8: q(y = i|Xi)←− [ẑtmean, ẑ

v
slide] // logits Eq.(8)

// Update prompts and adapter
9: ∆p,∆Avψ ← min Lcross-entropy(q, Y )
10: endfor

Output: Prompts {pi}Ki=1, Adapter Avψ

ẑv = αAv
ψ(z

v) + (1− α)zv, (4)

with ẑv denoting the new adapted visual embeddings weighted by a residual
ratio α to adjust the degree of conserving knowledge in the original projected
vectors, modeled as a learnable parameter (default α = 0.5).

Context-Driven Instance Pooling. For this study, it is crucial to first ag-
gregate the projected visual-instance features {ẑv}ni=1 = fvθ ({xi}ni=1). Herein,
we propose to pool all instance vectors to a single representation for slide-level
classification by weighting each instance with the learned K prompts. Formally,
given ẑtc ∈ RK×dt and ẑv ∈ RN×dv , textual learned prompts per class c and
instance features, where dt & dv are the same size, we pool following:

simc(ẑ
v, ẑtj) = softmax(φ(ẑv) · φ(ẑtj)/τ), (5)

ẑv{slide,c} =
1

K

K∑
j=1

(
1

N

N∑
i=1

simc(ẑ
v
i , ẑ

t
j) · ẑvi

)
, (6)

where τ is the temperature hyper-parameter of the pre-trained model and simc(·)
denotes the cosine similarity between l2-normalized (via φ) slide instances and
the k -th prompt embedding, including softmax normalization applied on N in-
stances in ẑv to obtain scores per instance for each class c. The scores are then
used to pool across visual embeddings with the final average embedding/class
weighted by the number of K prompts. Our pooling strategy is motivated by the
fact that rather than introducing an additional learnable visual pooling mod-
ule (e.g., AbMIL [11]), the learned prompts can be used to capture different
instance features related to the text. Consequently, given the slide level embed-
ding ẑv{slide,c}, we optimize all learnable parameters modules similar to Eq. (1)
based on the mean context embedding of learned prompts. As opposed to using
a fixed or separate prompt learner for slide-level classification, the mean of K
prompts is used as follows:
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ẑtmean = lnorm2

(
1

K

K∑
i=1

ẑti

)
, (7)

q(y = i | X) =
exp (sim(ẑtmean, ẑ

v
slide)/τ)∑C

j=1 exp (sim(ẑtmean,j , ẑ
v
slide)/τ)

. (8)

The proposed framework is summarized in Algorithm 1, which uses the final
slide-level logits q(·) to optimize the prompts and adapter parameters.

3 Experiments

Datasets. We validate the effectiveness of the proposed approach on the pub-
licly available NCT [13] and Camelyon16 [2] datasets. NCT dataset was pro-
posed to classify human colorectal cancer (CRC) and normal tissue. It consists
of 100, 000/7, 180 image patches (224×224) in 9 tissue classes extracted from
hematoxylin & eosin (H&E) stained Whole Slide Images (WSIs) from 86/50
patients for training/validation. To simulate the few-shot weak setting, we con-
structed positive/negative slides (bags) with a fixed bag size of (N = 32) and
a positive instance ratio of 5%. Specifically, cancer-associated classes cancer-
associated stroma and colorectal adenocarcinoma epithelium were used to sam-
ple positive instances for bag construction, with the rest used for negative bags.
Camelyon16 (CM16) was introduced for breast cancer metastasis detection in
lymph nodes. It comprises 400 H&E-stained WSIs of lymph nodes and is divided
into 271 WSIs for training and 130 for testing. During pre-processing, each WSI
was cropped into non-overlapping patches (×20 magnification) resulting in a
total of 3.2M patches. Each bag contains an average of 8,800 patches, with a
maximum of 20,000 patches per bag. In contrast to NCT, no bag construction
is necessary as WSIs have slide-level labels.
Implementation Details.We compare the proposed method against (i) Linear-
Probing (MaxPool), (ii) Linear-Probing (AbMIL [11]), (iii) CoOp [30], (iv) CoOp-
GCE [27], and (v) Adapter [8] with frozen VL models (ViT-B/32 PLIP [10]).
All models employ prompt templates (“An H&E image of [CLASS]”) based on
class categories of each dataset i.e. “benign normal tissue” & “colorectal adeno-
carcinoma” on NCT, and “metastatic breast cancer” on Camelyon16. We also
include AbMIL trained using all samples (100%) for efficiency, and prompt-
tuning baselines employ AbMIL [11] pooling by default. The Adam optimizer
was used with batch size 1 and a learning rate of 0.001 for all methods trained
for 50 epochs across different N -shot settings. For a fair comparison, the number
of prompts-pairs was set as K = 4 in all prompting baselines.

4 Main Results

Table 1 presents the results of our approach on two evaluated datasets. The
proposed method achieves significant gains against the zero-shot baseline and
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Table 1: Performance comparison on NCT and CM16. Slide-level classification
based on average AUC repeated 3 times with different model initialization. The
best and second best results are denoted in red and blue. † and †† denotes using
AbMIL & MaxMIL pooling.

Dataset NCT Camelyon16

Methods/N -shot 4 8 16 Avg 4 8 16 Avg

AbMIL (100%) - - - 96.43 - - - 85.43

MaxMIL [25] 53.36 54.39 58.41 55.39 55.14 64.14 61.68 60.32
AbMIL [11] 52.17 48.26 66.17 55.53 63.68 66.05 78.91 69.55

PLIP [10] - - - 56.31 - - - 65.31
+ LinearProbe [21] †† 59.05 57.08 58.00 58.04 54.86 63.97 57.19 58.67
+ LinearProbe [21] † 52.50 60.32 67.90 60.91 56.68 57.56 57.10 57.45
+ CoOp [30] † 69.58 81.63 84.41 78.54 64.12 67.47 71.25 67.28
+ CoOp-GCE [27] † 69.56 83.29 84.92 79.59 62.99 65.25 68.15 65.46
+ Adapter [8] † 70.89 77.82 80.40 76.03 59.98 68.72 75.54 68.08
+ Ours 87.51 86.99 89.94 88.48 64.12 79.40 80.78 74.43

Table 2: Instance-level performance.
The best and second best results are
denoted in red and blue.

NCT CM16

Methods 4-shot 8-shot 16-shot 4-shot 8-shot 16-shot

AbMIL 58.33 68.91 56.06 71.83 84.88 87.44

PLIP
+ CoOp 83.92 82.80 83.32 78.56 71.83 78.27
+ Ours 87.24 88.05 90.16 87.94 92.02 93.62

Table 3: Effect of modules on CM16
dataset. C-Pooling denotes context-
driven pooling.
Methods (PLIP) C-Pooling Adaptation. AUC

+ CoOp 71.25
+ Ours w/ Mean Pool ✓ 55.34
+ Ours w/ AbMIL ✓ 75.85
+ Ours ✓ 67.53
+ Ours ✓ ✓ 80.78

outperforms the weakly supervised AbMIL in average performance, especially
in the 16-shot setting on NCT. Compared to AbMIL(100%), performance was
fairly comparable i.e., −7.95%, suggesting that when trained on more samples,
our prompt-based learning can further enhance performance. Notably, among
the prompting baselines, CoOp-GCE reports the best overall performance, with
Adapter and CoOp in other evaluated few-shot settings. Recall that all compared
prompt-based baselines employ an instance pooling module (AbMIL), which
enables improved learning. We observed that the exclusion of the default pooling
mechanism results in significantly lower performance as shown for Linear-probing
(MaxMIL). The benefit of the proposed context-driven pooling is shown despite
not incurring extra learning parameters.

Furthermore, we report the best results on the challenging Camelyon16 and
observed the difference in results between the zero-shot baseline and our method
was less pronounced i.e., 65% vs. 74% compared to results on NCT. Interest-
ingly, Adapter and AbMIL baselines show clear gains over prompting; we at-
tribute this to the larger number of instances on this dataset i.e., mean bag size
8800, especially in the 16-shot setting. Nevertheless, we posit that text descrip-
tion initialization plays an important role in the efficient transfer of image-text
in the few-shot setting, despite learning under the presence of tissues with un-
even distribution across slides. To validate the robustness of learning with weak
labels, we present instance-level results in Table 2. Zero-shot PLIP reports good
performance without tuning, suggesting the model is already robust for instance
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Ground Truth AbMIL CoOp Ours

Fig. 2: Illustration of tumor ROI localization on Camelyon16 test samples. The
green annotation denotes the ground-truth, and yellow are the compared model
instance predictions (16-shot trained).

level tasks; but is not well-suited for slide-level multiple-instance inference as
higlighted in Table 1. Furthermore, we analyzed instance-level performance per
tissue type on NCT and report scores that are consistent with slide-level la-
bels i.e., lower scores were assigned to non-cancerous instances in positive slides
compared to the baselines (Appendix Fig. S2).

To better highlight slide-level tumor localization, Figure 2 shows we can
segment relevant tumor ROI even when trained with few-samples. Note that
both AbMIL and CoOp exhibit a higher number of false positive predictions
compared to ours in both exemplars. We also validate the robustness of the
learned prompt vectors wherein a new query description (e.g., Debris tissue,
Mucus tissue, etc.) can be used to retrieve the top-scoring instances for the
given query (Appendix Fig. S3). We intend to show that prompt-tuning in the
MIL setting still retains the base performance of the VL model and can further
enhance the performance as highlighted by more correctly retrieved samples.
Effect of Context-pooling and Adaptation. As shown in Table 3, compared
with using the mean of all instances (MeanPool) as the slide feature, the proposed
pooling strategy can boost the performance of the baselines. Further, we observed
more gains over CoOp when using AbMIL with adaptation. Note that while using
a single strategy shows improved scores, the combination of the proposed pooling
method and visual adaptation was overall better and complementary.

5 Conclusion

In this paper, we introduced prompt-tuning for histology classification with
learned prompt vectors for instance feature pooling in whole slide images. We
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show that the combination of feature adaptation and context-based pooling can
enhance learning in data-deficient settings, and is more efficient and comparable
to standard fine-tuning with multiple instance methods. Further exploring the
transferability of other pre-trained pathology VL models, subtyping tasks on
large datasets, including prompting with different pre-trained image encoders is
a topic of future research.
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