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Abstract. Weakly supervised nuclei segmentation methods have been
proposed to simplify the demanding labeling process by primarily de-
pending on point annotations. These methods generate pseudo labels
for training based on given points, but their accuracy is often limited
by inaccurate pseudo labels. Even though there have been attempts to
improve performance by utilizing power of foundation model e.g., Seg-
ment Anything Model (SAM), these approaches require more precise
guidance (e.g., box), and lack of ability to distinguish individual nuclei
instances. To this end, we propose InstaSAM, a novel weakly supervised
nuclei instance segmentation method that utilizes confidence of predic-
tion as a guide while leveraging the powerful representation of SAM.
Specifically, we use point prompts to initially generate rough pseudo in-
stance maps and fine-tune the adapter layers in the image encoder. To
exclude unreliable instances, we selectively extract segmented cells with
high confidence from pseudo instance segmentation and utilize these for
the training of binary segmentation and distance maps. Owing to their
shared use of the image encoder, the binary map, distance map, and
pseudo instance map benefit from complementary updates. Our exper-
imental results demonstrate that our method significantly outperforms
state-of-the-art methods and is robust in few-shot, shifted point, and
cross-domain settings. The code will be available upon publication.

Keywords: Nuclei instance segmentation · Weakly supervised learning
· Segment anything model · Model adaptation · Point annotation

1 Introduction

Separating cells or nuclei from pathology images is a crucial problem, leading to
the proposal of numerous deep learning-based techniques [12,1,17]. Annotating
a large number of nuclei to create a robust model requires significant effort
⋆ Corresponding author.
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and time. Consequently, recent advancements have introduced weakly supervised
techniques capable of segmenting entire cells even with point annotations within
the cells, aiming to address this challenge [20,21,13,19,22,24]. To train the models
using limited point annotations, most existing methods [20,21,13,19] utilize k-
means clustering [14] to separate foreground and background, generate pseudo-
instance segmentation labels based on Voronoi diagrams using point annotations,
and define losses to align predictions with these labels. These methods solely rely
on color and distance information from images to generate pseudo labels resulting
in inaccuracies, particularly in ambiguous nuclei boundaries, often leading to
significant performance degradation.

Recently, several nuclei segmentation models that leverage pre-trained knowl-
edge of the Segment Anything Model (SAM) have been proposed. CellViT [8]
was proposed to semantically segment nuclei by fine-tuning SAM with a large
amount of nuclei segmentation data, but it requires pixel-level annotations of
a large number of nuclei for training. Even if weakly supervised nuclei segmen-
tation models have also been proposed [4,18], their tasks are limited to binary
segmentation tasks, leaving instance segmentation out of reach.

In this paper, we propose a novel weakly supervised nuclei instance segmen-
tation method that can accurately segment nuclei and distinguish instances by
leveraging powerful representation of SAM. Our model utilizes complementary
training of pseudo instance segmentation labels, binary maps and distance maps,
and a novel pseudo labeling process. Specifically, we design a nuclei decoder that
predicts binary maps and distance maps as labels to utilize SAM in the instance
segmentation task. Each point of annotation is used as a SAM prompt to gen-
erate pseudo instance nuclei segmentation labels. However, pseudo label may
include wrong predictions that can negatively impact model performance. To
ensure stable learning, only the predicted foregrounds with high confidence and
no overlapping are utilized to define the losses, filtering out inaccurate pseudo-
instance segmentation labels during training. Instead of training the entire image
encoder, we insert adapters in the image encoder and train only the adapters,
and tokens and Multi-Layer Perceptrons (MLPs) in the nuclei decoder. Then,
we update the parameters of the adapters and nuclei decoder to generate better
pseudo-instance segmentation labels, binary segmentation, and distance maps
by minimizing the losses between the predictions and the pseudo labels. Our
contributions are as follows:

1. We apply SAM to weakly supervised nuclei instance segmentation
task, allowing rapid adaptation to the target domain with minimal
parameter changes.

2. We propose a method that simultaneously considers tasks for indi-
vidually segmenting each cell and segmenting the entire cells from
the image by leveraging high-confidence pseudo-labels in training.
These significantly improve performance.

3. In various experiments, we achieved state-of-the-art performance in
the nuclei instance segmentation task and confirmed the robustness
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Fig. 1: Overview of the InstaSAM. InstaSAM comprises the adapter for fine-
tuning, a mask decoder for prompt-based instance segmentation, and a nuclei
decoder for segmentation without prompts. The pseudo instance map used for
training is generated from the mask decoder’s output, with areas ignored during
pseudo labeling shown in white.

of the proposed method in few-shot, shift point, and cross-domain
settings.

2 Methodology

Fig. 1 shows an overview of our proposed method of employing a SAM structure
for weakly supervised nuclei segmentation. Similar to existing weakly supervised
nuclei segmentation methods [20,13,19], we create pseudo labels from point an-
notations to train our model. Initially, using a vanilla SAM, we created a rough
pseudo instance segmentation label S by prompting each point annotation to
obtain a segmentation mask for each nucleus. Pseudo labels are further refined
by rejecting mask overlaps and regions of high entropy. Then, we fine-tune the
image encoder using adapter layers [2] by inputting each point as a prompt to
obtain segmentation results S ′, aiming to make S ′ similar to S. Simultaneously,
predicted instance pseudo labels S ′ are refined and used to create additional
pseudo labels for binary segmentation B to detect foreground pixels and hori-
zontal and vertical distance maps D to distinguish boundaries between adjacent
nuclei. An additional fully trainable nuclei decoder is then used to predict binary
segmentation B′ and distance maps D′ from adapted image embeddings. In the
early stages of updating, S guides S ′, assisting in achieving favorable results for
B′ and D′. As the adapter is updated to better extract nuclei characteristics
based on B′ and D′, they mutually complement each other to enhance S ′. Dur-
ing inference, only the image is input since point annotations are not provided.
Thus, the model generates B′ and D′, from which the final instance segmentation
is predicted. The details for each part are described in the subsections below.
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SAM Adapter The naive approach to apply the SAM model for nuclei segmen-
tation is to use point coordinates to prompt the model to segment each instance.
Specifically, to segment kth nuclei, the image is transformed into an embedded
representation via the image encoder while the position coordinates of the target
nuclei are encoded by the prompt encoder. Image and prompt embeddings are
used by the mask decoder to predict the mask of kth nuclei. However, due to the
domain gap with natural images, predicted masks from pathology images tend
to include a lot of noise leading to a significant drop in segmentation quality [5].
Therefore, we insert adapter layers [9,3,2] to the image encoder to reduce the
discrepancy between domains and facilitate the nuclei segmentation task. In de-
tail, we insert two MLP layers between transformer blocks in the image encoder
to fine-tune the model with a minimal number of trainable parameters. Each
adapter layer combines the patch embeddings (F i

pe) with the high-frequency
components from the Fourier transform of the input image (Fhfc) to obtain an
adapted embedded representation (Ai):

Ai = MLPup(GELU(MLPi
tune(Fhfc + F i

pe))), (1)

where MLPi
tune is specific for each adapter layer and MLPup is a projection layer

shared across all adapter layers used to adjust the feature dimensions. Following
[2], we applied GELU [7] after MLPs.

Pseudo Labeling Previous works on weakly supervised nuclei segmentation
methods which are based on point annotations [20,21,13,19] depend on cluster-
ing techniques and Voronoi labels to create pseudo labels with the assumption
that nuclei are circular. Creating more accurate pseudo labels using Geodesic
distance also has the same limitations [19]. In contrast, leveraging the strong
learned representation of SAM, we implement instance-level pseudo label gen-
eration by using point coordinates as prompts. However, due to the domain
gap with natural images, our proposed pseudo labeling process excludes uncer-
tain areas, focusing only on reliable regions for training. Inaccurate areas are
identified where there are instance predictions with high entropy values and
also where there are nuclei with overlapping masks. Formally, for a set of point
annotations p = p1, p2, . . . , pK there is an equal number of predicted masks
m = m1,m2, . . . ,mK . For kth nuclei, prompts are constructed as one positive
point (pk) concatenated to four randomly selected negative points from other
nuclei. Subsequently, a nuclei binary mask m̂k is defined by thresholding the
probability values of mk by a factor δ. The total foreground area F is obtained
by adding all the foreground instance masks m̂k. Likewise, the entropy map H
is calculated after applying a sigmoid function to the nuclei mask probability
values σ(mk) = sigmoid(mk). The refined pseudo label ŷ for each pixel position
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j is then computed as follows:

F =
K∑

k=1

1[σ(mk(j)) > δ] (2)

H = −
K∑

k=1

σ(mk(j))log(σ(mk(j))) (3)

ŷ =

argmax
k

(concat[δ, σ(mk(j))]) if H(j) < ϵ and F(j) < 2

ignore otherwise,
(4)

where ϵ is a thresholding value. S = ŷ when the predicted mask m is obtained
from image embeddings without adaptation and S′ = ŷ when the adapter layers
are applied. Finally, we generate the pseudo binary label B and the pseudo
distance label D from S ′.

Optimization objective We leverage the strong representation of the SAM
model to generate pseudo instance labels S from point annotations in order to
train our nuclei segmentation model. However, the resulting instance map S
contains a large number of pseudo masks m with regions of high entropy leading
to big portions of the image to be ignored. Therefore we fine-tune the model via
adapter layers to generate a more reliable pseudo instance map S ′. Specifically,
the predicted mask m′

k, generated from adapted image embeddings and the point
prompt pk, is optimized to match the corresponding mask mk in the pseudo label
map S. For this process, we apply binary cross entropy (BCE) and intersection
over union (IOU) losses only to regions of low entropy in S and ignore others.

LS′ = BCELoss(m′,S) + IOULoss(m′,S). (5)

As the learning process progresses, the domain gap is gradually closed allowing
the adapted image embeddings to generate pseudo instance maps S ′ with lower
entropy values. Thus, reducing the size of the ignore areas allows the model to
use a larger number of pixels for foreground and distance pseudo labels that
further improve the adapter layers by optimizing the nuclei decoder outputs.

The nuclei decoder predicts a binary foreground map B′ and distance map
D′ (horizontal and vertical distance map) to detect all nuclei pixels in the image
and identify boundaries between adjacent nuclei. The nuclei decoder shares most
parameters for both tasks, except for input tokens related to each map and
output MLP layers. To train the foreground map, we combine a BCE Loss with
an IOU Loss while we apply the L1 loss to optimize the regression task of the
distance maps.

LB = BCELoss(B′,B) + IOULoss(B′,B),
LD = L1Loss(D′,D).

(6)

Finally, our optimization objective is defined as: L = λS′LS′ + λBLB + λDLD
where λS′ , λB and λD are weighting coefficients.
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Post-processing During inference, similar to Hover-Net[6], we obtain the in-
stance segmentation result using only B′ and D′ from the nuclei decoder. D′

passes through the Sobel operator [10] to calculate the gradient between pixels
in order to identify individual instances, i.e., high gradient values serve to dis-
tinguish adjacent instances as well as to locate the center of nuclei. Therefore,
combining gradient maps, foreground and instance centers, we perform instance
segmentation via the watershed algorithm. It is important to note that point
annotations and the original SAM mask decoder are not necessary at inference
time.

3 Experiments

Dataset Two independent datasets i.e., CPM17 & MoNuSeg, are utilised for
this study. CPM17, originates from digital pathology challenge [23], contains
64 H&E stained histopathology images with a total of 7,570 annotated nuclear
boundaries. Their image size varies between 500×500 to 700×700. We split a to-
tal 64 images into 32/32 images for training and testing sets. MoNuSeg [11], The
multi-organ nuclei segmentation dataset contains 30 H&E stained histopathol-
ogy images from 7 different organs with a total of 21,623 individually annotated
nuclear boundaries. Their image size is equal to 1000×1000. We split 30 images
into 16/14 images for training and testing sets.

For the few-shot setting of the ablation study, we reduced the number of train-
ing images to four. Specifically, for MoNuSeg, we selected four images ensuring
that each one represented one organ type to avoid duplication. Since CPM17
contains only the brain organ, we selected four training images randomly.
Implementation Details For training, we trained the model with a batch
size of 4 using the AdamW optimizer [16], and learning rate of 1e-4 which up-
dated through CosineAnnealingLR [15] with a tmax of 20. For pseudo labeling, δ
was set to 0.5 and ϵ to 0.3, and for model training, λS′ , λB, and λD, were set to 1,
1, and 5, respectively. Finally, for augmentation, we employed techniques similar
to conventional methods [13,19] including random resize, random affine transfor-
mation, horizontal flip, and random crop. All experiments were conducted with
a single NVIDIA RTX A6000 GPU and PyTorch version 1.13.1 environment.
Main Results We compared our method (InstaSAM) with previously pro-
posed various state-of-the-art (SOTA) methods [20,21,13,19,4]. All methods, ex-
cluding [4], was experimented under the same conditions as our method. [4]
was developed assuming the availability of bounding boxes instead of points,
and thus, experiments were conducted with bounding box annotations. Addi-
tionally, as this approach only predicted binary segmentation results, we applied
the connected component technique to the binary segmentation results following
MIDL [20] to obtain the instance segmentation. For evaluation, Dice and AJI
are used as metrics. Note that AJI, proposed by Kumar et al. [11], is proved to
be the most suitable metric to evaluate the object instance level segmentation
performance compared to Dice. As shown in Table 1, InstaSAM surpassed the
current SOTA [19] in CPM17 and MoNuSeg only by updating a limited num-
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Fig. 2: Nuclei instance segmentation results on CPM17 and MoNuSeg data when
nuclei points are centered. Only InstaSAM follows the ground truth shape of
each individual nucleus, while other methods have tendency to segment into
oval shape.

ber of parameters. In the CPM17 dataset, when the coordinates of point labels
are provided at the center, InstaSAM showed a significant performance gain of
+5.2% in Dice and +6.8% in AJI compared to PROnet. Despite All-in-SAM
utilizing more informative bounding box labels which require stronger guidance,
InstaSAM showed superior performance with a +3.2% in Dice and +5.3% in AJI.
Also, even when provided with shifted point annotations, InstaSAM gained a per-
formance gap of +3.7% in Dice and +4.5% in AJI compared to PROnet which
trained with intact point annotation. Since All-in-SAM only utilizes bounding
boxes, we recorded only no-shift condition results for both CPM and MoNuSeg.
In MoNuSeg, a more challenging dataset, InstaSAM also surpassed the PROnet
by a large margin of performance gap +2.2% in Dice and +1.9% in AJI and
the All-in-SAM with +3.4% in Dice and +7.2% in AJI. These achievements are
the result of model optimization with high-quality pseudo labels made by our
proposed pseudo labeling process. Compared with All-in-SAM, we conclude that
InstaSAM fully utilized point label information effectively. Moreover, given only
a few-shot dataset, we outperformed the other models trained on whole data.

Fig. 2 shows the instance separation of densely clustered nuclei. Particularly,
unlike methods that use cluster or Voronoi labels, which may miss elongated

Table 1: Comparison results of nuclei instance segmentation on two public
datasets. Shift indicates how far pixel-wise shifted from each nucleus center.

CPM17 MoNuSeg
shift0 shift2-4 shift4-6 shift6-8 shift0 shift2-4 shift4-6 shift6-8

Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI Dice AJI
MIDL[20] 75.0 55.5 75.3 56.9 74.4 53.7 72.2 49.9 70.1 44.9 69.9 45.0 66.3 39.9 61.0 31.5

Mixed Anno[21] 75.3 53.2 75.9 55.5 73.3 52.3 73.1 49.9 73.3 51.6 72.0 49.4 66.0 40.5 66.9 41.8
SPN+IEN[13] 74.3 54.3 72.9 52.1 70.1 47.9 69.4 46.8 74.0 53.4 72.3 50.4 69.1 46.5 65.6 39.4
PROnet[19] 78.7 62.7 78.2 61.8 77.4 60.7 77.0 60.2 75.0 55.5 74.8 54.8 73.3 53.2 72.5 50.9

All-in-SAM[4] 80.7 64.2 - - - - - - 73.8 50.2 - - - - - -
InstaSAM 83.9 69.5 83.9 69.5 83.1 68.7 82.4 67.2 77.2 57.4 77.3 57.1 76.9 56.0 73.3 52.6

InstaSAMfewshot 83.0 68.5 83.0 68.4 81.7 65.9 80.5 65.6 75.2 54.1 76.0 54.7 75.5 55.0 70.2 49.8
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nuclei shapes or segment them into round shapes, InstaSAM finds their true
shape effectively. This qualitative result is the upholder of the superiority of our
proposed multi-decoder structure and pseudo labeling process. More results can
be found in the supplementary material.

Table 2: Comparison results on
cross-domain settings

MO→CPM17 CPM17→MO
Dice AJI Dice AJI

MIDL[20] 71.2 51.7 69.1 45.3
Mixed Anno[21] 75.3 54.1 54.1 26.0
SPN+IEN[13] 72.4 54.0 65.6 41.2
PROnet[19] 76.4 58.7 72.0 51.2

All-in-SAM[4] 77.0 59.7 73.3 49.8
InstaSAM 79.6 63.4 75.1 53.9

InstaSAMfewshot 79.6 62.0 74.3 52.4

Table 3: Effect of proposed
pseudo labeling process

CPM17 MoNuSeg
Dice AJI Dice AJI

C + V 80.3 63.8 73.2 52.0
S 81.3 66.2 Nan Nan

S ′
w/oH 78.7 63.3 74.8 53.9

S ′
w/oF 64.0 45.8 59.5 39.9
S ′ 83.9 69.5 77.2 57.4

Ground Turth 84.9 71.0 78.6 59.6

Results on Cross-Domain setting In Table 2, we evaluated the robustness
of InstaSAM by cross-domain setting. When trained on MoNuSeg and evalu-
ated on CPM17, InstaSAM still surpasses the other methods that were trained
and evaluated both on CPM17. Also, the performance of InstaSAM trained on
CPM17 and evaluated on MoNuSeg surpassed the other models that were trained
and evaluated both on MoNuSeg in Dice. Compared to the cross-domain sce-
nario of PROnet and All-in-SAM, InstaSAM still exhibits a large performance
gap even in the few-shot scenario. These results indicate that InstaSAM pre-
served the generalization ability of SAM while effectively adapting the nuclei
instance segmentation task.
Effect of proposed pseudo labeling process We further looked into the
benefit of the proposed pseudo labeling process as shown in Table 3. To show the
effectiveness of the pseudo instance map, we trained the models respectively with
unrefined pseudo instance maps S, and cluster and Voronoi labels C + V which
are mainly used in previous methods [20,21,13,19]. For the model with C + V,
we employed B rather than S ′ to generate D. We also test our models without
F or H while maintaining S ′ to prove the necessity of each step of our pseudo
labeling process. The results indicate that our model surpassed the performance
of existing SOTA methods [19], regardless of the pseudo label type for both
datasets. For the MoNuSeg dataset, due to the inconsistent shape of each nucleus,
inaccurate cluster and Voronoi labels resulted in a serious performance drop.
When S is used, the majority of areas exhibit high entropy values, resulting in a
significant portion of the data being unusable for training purposes. In addition,
when the instance map is refined without H or F , an improper segmentation
area still exists, which leads to poor performance. On the contrary, our proposed
pseudo labeling process helped InstaSAM to achieve a performance close to the
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model trained with ground truth annotation. This indicates that our pseudo
labeling process is crucial and significantly enhances the learning process.

4 Conclusion

We introduce a novel weakly supervised approach, named InstaSAM, utiliz-
ing SAM to address nuclei instance segmentation. We proposed a new pseudo-
labeling process into InstaSAM. By incorporating adapter layers into SAM’s
image encoder and tokens in the decoder, the performance of InstaSAM is well-
fitted on the target domain while maintaining SAM’s generalization ability. In-
staSAM achieved state-of-the-art results on the CPM17 and MoNuSeg datasets.
Extensive ablation studies verified the effectiveness of InstaSAM on few-shot,
shifted points, and cross-domain settings.
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