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Abstract. Medical image segmentation is crucial in the field of medi-
cal imaging, assisting healthcare professionals in analyzing images and
improving diagnostic performance. Recent advancements in Transformer-
based networks, which utilize self-attention mechanism, have proven their
effectiveness in various medical problems, including medical imaging.
However, existing self-attention mechanism in Transformers only cap-
tures pairwise correlations among image patches, neglecting non-pairwise
correlations that are essential for performance enhancement. On the
other hand, recently, graph-based networks have emerged to capture
both pairwise and non-pairwise correlations effectively. Inspired by recent
Hypergraph Neural Network (HGNN), we propose a novel hypergraph-
based network for medical image segmentation. Our contribution lies in
formulating novel and efficient HGNN methods for constructing Hyper-
edges. To effectively aggregate multiple patches with similar attributes
at both feature and local levels, we introduce an improved adaptive tech-
nique leveraging the K-Nearest Neighbors (KNN) algorithm to enhance
the hypergraph construction process. Additionally, we generalize the con-
cept of Convolutional Neural Networks (CNNs) to hypergraphs. Our
method achieves state-of-the-art results on two publicly available seg-
mentation datasets, and visualization results further validate its effective-
ness. Our code is released on Github: https://github.com/11yxk/AHGNN.

Keywords: Medical image segmentation · Graph neural network · Hy-
pergraph Neural Network · K-NN · U-Net.

1 Introduction

Automatic analysis of medical images has emerged as a significant field to assist
healthcare professionals in early diagnosis and treatment. The task of medical im-
age segmentation is very important in medical imaging analysis domain. Over the
past decade, CNNs have emerged as the leading frameworks due to their superior
performance. Several CNN-based frameworks for different computer vision tasks

https://github.com/11yxk/AHGNN
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Fig. 1: The comparison between CNNs, Transformer, Graph, Hypergraph. Con-
ventional hypergraph generated hyperedges by using fixed number of nodes while
proposed scheme is constructed adaptively according to the object size.

such as segmentation, detection and classification are presented [3,9,16,22,25].
Recent advancements in Vision Transformer (ViT) [4] employing self-attention
mechanism have proven effective for a variety of tasks [12]. Unlike CNNs, Trans-
formers can efficiently capture long-range dependencies and expand receptive
fields, offering significant improvements in understanding visual data. However,
the design of Transformer has a weak inductive bias. Normally, Transformers ne-
cessitate a large amount of data samples for pretraining. Moreover, self-attention
mechanism of Transformers tends to capture excessive redundant information,
due to the use of all image patches.

More recently, Graph Convolutional Networks (GCNs) [13] have been intro-
duced. Due to their promising performance, graph-based methods have attracted
much attention. Han et al. [7] proposed the Vision Graph Neural Network (ViG),
which extracts and utilizes graph-level features. The ViG model effectively cap-
tures the connections between image patches, achieving better results compared
to Transformer-based models. Han et al. [8] proposed the Vision HyperGraph
Neural Network (ViHGNN) and further applied the hypergraph for vision tasks.
The mechanisms based on Transformers, graph, and hypergraph demonstrate a
fundamental conceptual interconnectedness. A Transformer can be seen as a spe-
cific type of graph, a fully connected graph, where each node is connected to every
other nodes. Similarly, a graph can be viewed as an instance of a hypergraph,
in which each edge contains only two nodes, representing pairwise correlations.
While hypergraph can be considered a more generalized graph structure. They
utilize the concept of hyperedge, which can model not only pairwise correla-
tions but also non-pairwise connections. This enables the hypergraph network
to identify relevant correlations more effectively. This concept is resembled in
Figure 1. More recently, Feng et al. introduced a Hypergraph Neural Network
(HGNN) [5], which employs the K-Nearest Neighbors (KNN) algorithm to con-
struct the hypergraph from an image. Peng et al. [19] applied HGNN at both
local and global levels within a U-Net structure for MRI segmentation. Lostar
et al. [17] generalized the concept of the Graph U-Net to hypergraphs to learn
data embeddings more effectively, showing the potential of hypergraph structure
in enhancing data representation and segmentation tasks. The construction of
hyperedges is a critical aspect and currently hot research topic in this field.
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Motivated by the promising results of hypergraphs, we aim to introduce the
concept of hypergraphs for medical imaging problems. Our motivations can be
expressed as follows: (i) The hypergraph represents a more generalized form
than graph and Transformers, effectively modeling non-pairwise correlations.
(ii) Semantic segmentation is the process of partitioning an image into distinct
regions. This can be viewed as the process of grouping pixels that have similar
characteristics. Similarly, hypergraph construction involves creating hyperedges,
which also signifies a clustering mechanism for pixels with similar features. (iii)
Effectively modeling both pairwise and non-pairwise connectivity necessitates
the careful construction of hyperedges. Moreover, in medical imaging, one of
the challenges lies in effectively segmenting objects that vary in size. Therefore,
we propose a novel methodology that utilizes the degree of nodes to construct
the hypergraph according to the size of objects. Conceptually, we introduce a
novel approach based on node degree using KNN, offering an improved scheme
to construct hypergraphs. Further, we propose to construct hypergraph at local
level similar to the sliding window receptive field used in CNNs, to capture local
features. These hypergraphs at the feature and local levels are concatenated to
enhance the connections between nodes with similar attributes. Our approach
aims to enhance medical imaging analysis by enabling a more comprehensive
grouping of pixel information, leading to improved segmentation and diagnostic
accuracy. Our contributions can be given as:
(1) We present a segmentation framework using the concept of hypergraph for
medical image segmentation.
(2) We introduce a novel strategy for constructing hyperedges utilizing the de-
gree of nodes, which represents their importance. The connectivity among the
nodes is adaptively determined based on their degrees.
(3) Additionally, we generalize the concept of CNNs to hypergraph domain, en-
abling the construction of hyperedges to learn local features in a manner similar
to the sliding window receptive field.
(4) Our experiment results show that our method achieves state-of-the-art per-
formance using two publicly available medical segmentation datasets. Our visu-
alization results further validate the effectiveness of our method.

2 Proposed Method

The overview of the proposed framework has been given in the Figure 2. We
adopt an encoder and decoder network following the design of ScaleFormer [10].
However, ScaleFormer employs Transformers in their network, but we incor-
porate hypergraph modules to identify essential features more effectively. The
following section provides a detailed explanation of the proposed methods.

2.1 Hypergraph Construction

Hypergraph Definition. In a graph, each edge usually connects two nodes.
In contrast, a hypergraph consists of hyperedges, which can contain any number
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Fig. 2: The overview of proposed method.

of nodes. In this paper, a hypergraph is defined as G = (V,E), where V is the set
of N nodes. We view the image patches as nodes. E is the set of E hyperedges.
The hyperedge can be derived from an incidence matrix H ∈ {0,1}N×E where
Hne = 1 if the hyperedge e ∈ E contains node n ∈ N and Hne = 0 otherwise.

Adaptive Hypergraph Construction. Recently, a few methods using hyper-
graph have been introduced [5,17,19]. These methods normally form hyperedges
by assigning a fixed number of neighbors to each node. However, in real-world
applications, such as medical imaging, objects vary in size. If hyperedges include
the same number of nodes, they cannot accurately model the shape attributes of
target regions. Here, we propose utilizing the degree of a node as a means to gen-
erate hyperedges. We argue that the number of connections to any node should
depend on the specific context. For example, in segmentation tasks, nodes within
larger segmented areas should contain more neighbors, while nodes in smaller
regions should have fewer connections. Our concept of generating hyperedges
based on node’s degree is visually represented in Figure 3.

Formally, given an extracted feature map I ∈ RH×W×C where H,W ,C are the
height, width and the number of channels. The feature map I is reshaped to
G ∈ RHW×C , which can be seen as a graph with N =HW nodes with C features
at each node. We construct hyperedge by considering one pixel as one node in
feature space. A node is considered as a patch. The hypergraph is constructed
by following steps:
(1) We compute the distance matrix B ∈ RN×N between any two nodes using Eu-
clidean distance. This distance is determined using the values across the channel
dimension (Figure 3, Step-1).
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Fig. 3: The example of proposed Adaptive Hypergraph Construction. We omit
α for simplicity.

(2) To formulate the hypergraph, the distance between n-th node and other
nodes is represented in the n-th column of the matrix B (Figure 3, Step-2). For
each column, we utilize an algorithm such as K-Nearest Neighbors to generate
the matrix hI

∈ RN×EA . The n-th column of hI represents the most similar Top-k
neighbor nodes of n-th node. Then the self-loop is added to obtain the initial
incidence matrix HI , as discussed in [5]. In this scenario, the n-th node and its
nearest neighbors, represented by the set M , form a hyperedge (each column of
hI can be viewed as a hyperedge). Finally, a total of EA = N hyperedges are
obtained. The element hI

mn = 1 if m ∈M and hI
mn = 0 otherwise.

(3) As a novel strategy, we propose constructing hyperedges based on the degree
of nodes. Unlike the conventional approach where each hyperedge contains the
same number of nodes, we determine the number of connections according to the
node degree matrix D = ∑

EA

e=1 h
I (summation of each row of hI). Additionally, we

introduce a scaling factor α, to adjust the degree of connectivity for each node
Dα
= α ×D. This adjustment allows to generate a degree matrix D for deter-

mining better connection of the hyperedges. This process is given in (Figure 3,
Step-3).
(4) We can relate the degree of any node to its importance. A higher degree indi-
cates that the node is involved in more hyperedges, highlighting its significance.
We can use this observation to formulate new incidence matrix HA

∈ RN×EA .
More specifically, in the Step-3, using the matrix hI we calculate the degree of
each node, resulting in a degree matrix Dα. The degree of each node is consid-
ered a measure of its connectivity. For any node, if the degree is p, we choose the
Top-p nearest neighbors according to distance matrix B to form a hyperedge. By
applying this procedure to each node, we obtain the matrix hA which contains
hyperedges based on the importance of each node. Finally, the self-loop is added
to obtain the final HA (Figure 3, Step-4). We have provided sample examples
in the supplementary material.

Local Hypergraph Construction Using Sliding Window. The widely
used sliding window-based convolution mechanism uses a kernels of fixed size to
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Fig. 4: Example of local hypergraph construction

convolve the feature maps while interacting with the local neighbor pixels. This
process is extended across the entire image through the use of stride operations.
We adopt this concept for hypergraph to extract local features. In a convolution
operation with a kernel size of KS×KS and a stride of S, the kernel will slide T
times to cover the entire feature map. During each sliding window operation, we
consider the nodes (patches) within the coverage of kernel as a single hyperedge.
The hyperedge can be represented as HL

∈ RN×EL . In this case, there is a total
of EL = T hyperedges, with each hyperedge containing KS×KS nodes. A simple
example is shown in the Figure 4. Additionally, this concept can be extended
to incorporate various convolution methods, such as Dilated Convolution. This
hypergraph construction enables creation of hyperedges to learn local features
in a manner similar to the convolution operation.

2.2 Hypergraph Convolution

We use the general Hypergraph Convolution (HGC) process [5], which can be
defined as:

Y = σ (D−
1
2HWZ−1HTD−

1
2GΘ) (1)

Where H ∈ RN×(EA+EL) is the concatenation of HA and HL, representing the
combination of these two types of hyperedges. D = ∑E

e=1H is the node degree
matrix and Z = ∑

N
n=1H is the hyperedge degree matrix of H. D and Z are used

to normalize H. W is a diagonal matrix representing the weights of hyperedges.
We set it to an identity matrix in our experiments. The G,Y ∈ RHW×C are the
input and output features. The Θ ∈ RC×C is the training weight and σ(⋅) is
activation function.

2.3 Optimization

The combination of Cross Entropy loss and Dice loss is used to train the network:

L = a ∗LCross entropy + b ∗LDice (2)

Where a, b are hyperparameters and set to 0.3 and 0.7 based on our experiments.
Additionally, we utilize the outputs from five different levels at the decoder part
to adopt the loss aggregation strategy, as outlined in [21]. We calculate the loss
for 24 − 1 combination predictions from the last four stages of decoder network.
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3 Experiments

3.1 Dataset

We have used Synapse and ACDC datasets. Synapse is a publicly available multi-
organ segmentation dataset of the MICCAI 2015 Multi-Atlas Abdomen Labeling
Challenge. It totally contains 30 abdominal CT scans. While 18 cases are used
for training and 12 cases for testing following the previous work [2]. We report
the results in terms of Dice Similarity Coefficient (DSC: %) as main measure-
ment and 95% Hausdorff Distance (HD95: mm). ACDC is a public cardiac MRI
dataset. It consists of 100 exams with three labels, left ventricle (LV), right ven-
tricle (RV) and myocardium (MYO). The dataset is divided into 70 training
samples, 10 validation samples, and 20 testing samples according to [2].

3.2 Implementation details

The input image resolution is set to 224×224. The entire framework is trained
using SGD optimizer. For Synapse dataset, the network is trained for 600 epochs
with batch size of 8 and the learning rate is set to 0.003. For ACDC dataset, the
network is trained for 200 epochs with batch size of 8 and the learning rate is set
to 0.05. We set the k=1 in for KNN to generate the initial incidence matrix hI .
We use kernel size KS=3 and a stride S=1 for local hypergraph construction
based on our experiments.

3.3 Ablation study

The ablation study is conducted to evaluate the effectiveness of different com-
ponents of our framework. Following the previous work, we selected common
configurations such as K neighbors (set to 1), kernel size (set to 3), and stride
(set to 1). These settings are widely used for extracting features, while k = 1 is
a standard choice to initialize hyperedge construction. We provide experiments
using tuning parameter (α) to adjust effect of node’s degree. Table 1 (a) shows
the experiment results using different scaling factor α for computing the ratio
of node’s degree. Based on our experiments, we observe that using a low value

Table 1: (a) Ablation study for factor of node’s degree, (b) hypergraph construc-
tion methods, (c) different correlational modeling schemes

α DSC(%)
0.5 83.43
1.0 84.03
1.5 83.84
2.0 82.90

(a)

Method DSC(%)
KNN 82.81

Adaptive 83.27
Local 83.65
Ours 84.03

(b)

Method DSC(%)
Transformer[4] 82.63

GCN[7] 83.27
Hypergraph(Ours) 84.03

(c)
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Fig. 5: The visualization results of some of our constructed hyperedges. The red,
green and blue area denote the three hyperedges. Compared with KNN, which
assigns a fixed number of neighbors to each node, our method adaptively assigns
neighbors according to the size of segmented area.

Table 2: Synapse dataset.
Method DSC HD95 Para.
V-Net[18] 68.81 - 43.60
DARR[6] 69.77 - -
R50 U-Net[2] 74.68 36.87 -
U-Net[22] 76.85 39.70 37.67
R50 Att-UNet[2] 75.57 36.97 -
Att-UNet[2] 77.77 36.02 34.80
R50 ViT[2] 71.29 32.87 -
TransUnet[2] 77.48 31.69 105.13
MTM[23] 78.59 26.56 78.87
SwinUNet[1] 79.12 21.55 27.17
AFTer-UNet[24] 81.02 - -
MISSFormer[11] 81.96 18.20 42.46
TransCASCADE[20] 82.68 17.34 35.27
ScaleFormer[10] 82.86 16.81 113.81
MaxFormer[14] 83.66 15.89 88.93
Ours 84.03 13.26 43.08

Table 3: ACDC dataset.
Method DSC
R50 U-Net[2] 87.55
R50 Att-UNet[2] 86.75
TransUnet[2] 89.71
SwinUNet[1] 90.00
TransUnet+[15] 90.42
MTM [23] 90.43
PVT-CASCADE[20] 91.46
TransCASCADE[20] 91.63
MAXFormer[14] 92.15
Ours 92.02

of alpha is necessary to avoid redundant information. We also conduct exper-
iments using different hypergraph construction methods (Table 1(b)). These
methods are baseline (K-Nearest Neighbors), Only degree assignment approach
(Adaptive), Hypergraph Construction Using Sliding Window (Local) and our
proposed approach. We also compare different correlational modeling methods
such as Transformer, GCN and Hypergraph in Table 1(c).

3.4 Comparison with the State-of-the-art Methods

Table 2 and 3 report the experiment results for the Synapse and ACDC datasets,
respectively. According to the results, our method demonstrates better and com-
petitive performance in comparison to other SOTA methods. Our hypergraph
construction process does not increase parameter count and maintains low com-
putational cost by using low-resolution feature space. To verify the effectiveness
of our proposed method, we visualize the hyperedges formed by adaptive hyper-
graph construction strategy, shown in Figure 5. Our hypergraph construction
method effectively models complex relationships and connectivity among pixels
with similar attributes. However, in our experiments, we observed some unnec-
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essary connections between nodes. Therefore, we aim to improve the efficiency
of hypergraph construction further.

4 Conclusion

In this work, we present a hypergraph-based framework for medical image seg-
mentation task. We proposed novel hypergraph construction method that can
effectively capture the feature and local level information. Our method achieves
state-of-the-art results on two publicly available segmentation datasets.
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