
EchoFM: A View-Independent Echocardiogram
Model for the Detection of Pulmonary

Hypertension

Shreyas Fadnavis∗1, Chaitanya Parmar∗1, Nastaran Emaminejad1, Alvaro
Ulloa Cerna1, Areez Malik1, Mona Selej1, Tommaso Mansi1, Preston

Dunnmon1, Tarik Yardibi1, Kristopher Standish†1, and Pablo F. Damasceno†1

1Janssen R&D, LLC, a Johnson & Johnson Company
{sfadnavi, cparmar, nemamine, aulloace, amalik6, mselej, tmansi,

pdunnmon, tyardibi, kstandis, pdamasc1}@its.jnj.com

Abstract. Transthoracic Echocardiography (TTE) is the most widely-
used screening method for the detection of pulmonary hypertension (PH),
a life-threatening cardiopulmonary disorder that requires accurate and
timely detection for its effective management. Automated PH risk de-
tection from TTE can flag subtle indicators of PH that might be easily
missed, thereby decreasing variability between operators and enhancing
the positive predictive value of the screening test. Previous algorithms
for assessing PH risk still rely on pre-identified, single TTE views which
might ignore useful information contained in other recordings. Addi-
tionally, these methods focus on discerning PH from healthy controls,
limiting their utility as a tool to differentiate PH from conditions that
mimic its cardiovascular or respiratory presentation. To address these is-
sues, we propose EchoFM, an architecture that combines self-supervised
learning (SSL) and a transformer model for view-independent detection
of PH from TTE. EchoFM 1) incorporates a powerful encoder for fea-
ture extraction from frames, 2) overcomes the need for explicit TTE
view classification by merging features from all available views, 3) uses
a transformer to attend to frames of interest without discarding others,
and 4) is trained on a realistic clinical dataset which includes mimick-
ing conditions as controls. Extensive experimentation demonstrates that
EchoFM significantly improves PH risk detection over state-of-the-art
Convolutional Neural Networks (CNNs).
Keywords: Transthoracic Echocardiograms · Foundation Model

1 Introduction

Diagnosis of Pulmonary Hypertension (PH) is challenged by non-specific, over-
lapping symptoms that negatively impact patient outcomes [7]. Transthoracic
Echocardiography (TTE) is a non-invasive technique that uses sound waves to
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generate heart images. TTE is crucial for PH screening by enabling the measure-
ment of cardiac velocities, sizes, and pressures that, in combination with interna-
tional guidelines [10], can be used to compute PH risk. Despite its utility, TTE
has shown a false negative rate of up to 36% [9, 20] and significant inter-reader
variability in diagnosis [12] compared to right heart catheterization (RHC), an
invasive gold standard for PH diagnosis. Recent studies have explored using deep
learning techniques for automation of PH-related measurements [21] or direct
estimation of PH risk [24]. While not addressing the prevalent issue of clinical
discrimination of PH from other mimicking conditions, these works present an
important step towards shortening the patient journey. However, state-of-the-art
approaches still depend on either manual or automated pre-selection of specific
views from numerous images that are acquired during a patient’s clinical visit.
This selection can introduce errors to downstream classification tasks and may
overlook valuable information present in other views.

Here we investigate the use of a transformer-based model, EchoFM, for PH
differential diagnosis from TTE videos without the need for explicit view classifi-
cation. To maximize the benefits of multiple views, we combine robust frame-wise
feature extraction using a foundational model (FM) with a transformer-based
classifier, enabling simultaneous loading and dynamic analysis of all patient
recordings without pre-selection of views. Experiments in two real-world clin-
ical datasets demonstrate that EchoFM achieves state-of-the-art performance in
differentiating PH from healthy controls as well as from other cardiovascular or
respiratory conditions.

2 Related Work

Computer vision significantly aids heart measurement estimation and diagnosis
from TTE waveforms. A typical TTE acquisition generates multiple still images,
Doppler waves, and B-mode views, such as the parasternal long-axis (PLAX),
parasternal short-axis (PSAX), apical four-chamber (A4c), and subcostal four-
chamber (S4c) views, all essential for assessing cardiac structure and function
(Fig. 1) [1]. Automated view classification has been explored using methods like
spatio-temporal feature extraction, dictionary learning [13], and deep learning
techniques such as convolutional neural networks (CNNs) and contrastive learn-
ing [16, 24, 15, 4]. Despite advancements, challenges persist due to the similarity
among some views and intra-view variability, affecting classification performance
and disease risk assessment. EchoNet, a 3D CNN, has been trained to predict
cardiac volumes and ejection fraction from A4c views [6]. Other deep learning
workflows have been developed for segmentation and annotation of cardiac mea-
surements in TTE videos [21]. However, all these approaches often rely on a single
TTE view and do not fully exploit the temporal dynamics and diverse imaging
orientations, leaving potential cardiac dysfunction indicators unexplored. Addi-
tionally, these algorithms often provide diagnosis of PH with respect to healthy
controls, a significantly less challenging task than diagnosis with respect to mim-
icking conditions or those with overlapping symptoms [2]. Our research addresses
these issues by integrating a pre-training encoder with a transformer model,
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Fig. 1. EchoFM Architecture for View-Independent TTE-based PH Classification.
TTE videos acquired during a patient visit (left) are inputted into a self-supervised
model (center) that produces frame-wise embeddings vectors. Upon concatenation and
location via positional tokens, they are fed into a transformer model (right) trained
specifically to identify PH subjects from non-PH.

leveraging the strengths of Self-Supervised Learning (SSL), which have shown
promise in medical imaging and video data analysis [5, 3, 18, 22].

3 Methods
Multi-view TTE image data can be represented as a set of matrices, each row
corresponding to a specific view acquired during the patient visit. We consider
a dataset comprising N patients. For each patient i, V distinct videos, each
composed of mv frames, are recorded. The video dataset can be expressed as:

X =
{
Xi,v ∈ Rmv×D1

∣∣ i = 1, 2, . . . , N ; v = 1, 2, . . . ,V
}

Here, Xi,v denotes the matrix associated with the i-th patient in the v-th video.
Each matrix has dimensions mv ×D1, where D1 represents the feature dimen-
sionality of individual frames in the video with mv frames.

3.1 EchoFM Algorithm:
EchoFM is composed of two main components: a self-supervised encoder and a
downstream task classifier, explained in detail below:
3.1.1 Self-supervised Pre-training for Robust Representations: We adopt
a self-supervised pre-training strategy [8, 17, 19] to embed TTE video frames into
dense and robust representations. EchoFM employs DINOv2 [18], using a loss
function LDINOv2 defined as the mean negative dot product between teacher and
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student representations across all augmentation training pairs, following temper-
ature scaling and normalization:

LDINOv2 = − 1

N

N∑
i=1

(
zmv1 ,i

· zmv2 ,i∥∥zmv1
,i

∥∥
2
·
∥∥zmv2

,i

∥∥
2

)

Here, N signifies the total count of image augmentation pairs, zmv1 ,i
and zmv2 ,i

represent the temperature-scaled embeddings for the i-th image pair’s augmen-
tations mv1 and mv2 , produced by the student network. This loss function serves
to harmonize the student network’s representations of differing views of an iden-
tical image, as guided by the teacher network. Each frame of the TTE video, with
dimensions D1 = 224× 224× 3, was independently fed into the DINOv2 model.
Subsequently, a Vision Transformer model (ViT B/16) [14] was pre-trained us-
ing the DINOv2 objective. This procedure employed a batch size of 256 and
a learning rate, initialized at 0, warmed up to 8e-4 during the initial 10% of
epochs, followed by a cosine decay to 1e-6 for the remaining iterations. The pre-
training phase spanned 400k iterations on four NVIDIA A10G GPUs (two days).
After DINOv2 pre-training, each frame was transformed into an embedding of
D2 = 768 dimensions. The resulting output for each video formed a matrix:

Xi,v =
[
d1 d2

... dmv

]
Where Xi,v is the matrix for a video, di is the i-th frame’s D2-dimensional em-
bedding, and mv is the total number of frames for that video. These embeddings
constitute the inputs for downstream analysis within the EchoFM model.
3.1.2 Transformer Network for View-Independent Tasks: We enhance
TTE video analysis by incorporating positional encoding to capture the temporal
sequence within each echocardiographic video. This approach enables dynamic
function learning and frame relevance differentiation for disease risk assessment.
The positional encoding formula for frame position pos and dimension D2 (set
to 768 for EchoFM) is:

PE(pos,2i) = sin
( pos

100002i/D2

)
,

PE(pos,2i+1) = cos
( pos

100002i/D2

)
,

facilitating an understanding of temporal dynamics in a n×D2 matrix format.
Our model employs a multi-head attention mechanism [23], crucial for analyzing
temporal sequences in multi-view TTE data. By assigning weights to each frame,
it identifies critical sections of the data through:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
,

where Q, K, and V are queries, keys, and values. This mechanism allows for de-
pendency tracking across frames. The model also employs multi-head attention:
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Dataset Patients Videos Frames

Sheffield
Train 615 13,961 5,800,316

Validate 205 4,731 2,004,004
Test 204 4,449 1,664,886

CIPHER
Train 443 8,539 13,796,246

Validate 147 3,257 5,964,317
Test 149 3,189 5,219,280

Table 1. Data details for training, validation, and testing.

MultiHead(Q,K, V ) = [head1; head2; ...;headh]WO,

to model inter-view correlations, enhancing classification accuracy. The term
headn represents an individual attention head capturing different aspects of the
input, while WO is a weight matrix that transforms the concatenated outputs of
all attention heads into a vector.

3.2 Weakly Supervised Classification of TTE Videos: We explore an al-
ternative to transformer-based spatio-temporal classification using weakly super-
vised learning (WSL) for state-of-the-art CNNs. WSL addresses the challenges of
analyzing large video datasets by randomly sampling frames and learning from
their features for classification. In this setup, features from frame-wise 2D CNNs
are integrated using an attention-based aggregator, and the compiled feature
vector is processed by a classifier network trained end-to-end. This approach
can be used by both traditional single and multi-view CNNs. The impact of SSL
pre-training was investigated as part of our ablation study.

4 Data and Experiments
Dataset: Our study utilized two distinct, private PH datasets: Sheffield [11] and
CIPHER [9]. Both datasets include subjects initially suspected of PH and eval-
uated by both TTE and invasive RHC. The presence of this invasive procedure
likely means that some cardiovascular or respiratory conditions was present for
all subjects, making this a significantly more challenging dataset compared to
those that include only PH and healthy controls. The Sheffield dataset consists
of 1024 subjects, averaging 10 TTE views each, with a maximum of 20 views.
The CIPHER dataset includes 739 subjects, each having an average of 10 views
and up to 22 views (see Tab. 1).
Data pre-processing: An echocardiography study typically consists of 10+
videos, each containing a (sometimes repeated) view of the heart. For pre-
processing, video pixel data found in the DICOM files were converted to RGB
from either YCRCB or gray colormaps and the region where the beam-formed
cone was located was found in the “Sequence of Ultrasound Regions" DICOM
tag. Finally, the frames were saved into PNGs.
Evaluation Metrics: In diagnosing PH using TTE, we compute AUC, F1
Score, and Accuracy in a 4-fold cross-validation setting. These respectively eval-
uate the model’s ability to distinguish between PH and non-PH cases, maintain
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precision-recall balance, and correctly classify instances, with special considera-
tion given to potential dataset imbalance. To binarize the continuous predictions
the model output, a threshold of 0.5 was used on the sigmoid outputs.
View Classification: We employed off-the-shelf view classification algorithms
[24] to identify, for each patient, the video with highest probability of being A4c
– the de facto standard echocardiogram view, used by most traditional methods
to acquire relevant anatomical and functional information for PH classification.

Method Training AUC Score F1 Score Accuracy
Baseline CNN (single) 0.67 ± 0.05 0.56 ± 0.33 0.52 ± 0.20
EchoFM DINOv2 0.80 ± 0.01 0.87 ± 0.01 0.79 ± 0.02

Table 2. Comparison of performance metrics between baseline method (CNN with
single video) and EchoFM.

5 Results
Baseline Experiment: The goal of this experiment was to assess the efficacy of
EchoFM at distinguishing patients with PH from non-PH patients. For bench-
marking purposes, we used an off-the-shelf view-classification algorithm [24] to
single out the one A4c view per patient, which was fed into a CNN for disease
classification. When addressing the challenge posed by the varying lengths of
videos, we utilized a WSL model that employs attention-based CNNs. The per-
formance metrics for the baseline using the CNN method revealed an AUC Score
of 0.67 ± 0.05, an F1 Score of 0.56 ± 0.33, and an Accuracy of 0.52 ± 0.20. In
contrast, our proposed EchoFM, integrating DINOv2 and a custom transformer
architecture, addresses the constraints of a variable number of videos and their
lengths inherent in the baseline method. The performance enhancement is ev-
ident across all metrics with EchoFM recording an AUC Score of 0.80 ± 0.01,
an F1 Score of 0.87 ± 0.01, and an Accuracy of 0.79 ± 0.02 (see Tab. 2). We
attribute the relatively low performance of traditional methods to the difficulty
in distinguishing different types of heart disease present in this dataset – a sig-
nificantly more challenging problem than identifying PH from healthy controls.
EchoFM Experiments: EchoFM’s success in complex diagnosis could be at-
tributed to one or more of the following architectural advancements: 1) the
incorporation of multiple views, 2) the deployment of a effective pre-training en-
coder, and 3) the application of a spatio-temporal network. To evaluate this hy-
pothesis, we methodically implemented the following architectural adjustments:
1) integration of multiple concatenated views within the WSL framework used
as baseline, 2) utilization of multiple pre-training encoders, and 3) adoption of
varied architectures for the downstream classification. The outcomes of these
experiments are detailed in Tab. 3. While SimCLR does not show significant im-
provement over traditional CNNs, DINO and DINOv2 demonstrate large gains
in performance across all three metrics. Comparing WSL with transformers sug-
gests that extracting spatio-temporal features through the transformer model
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provides significant improvements for the PH classification task when SimCLR or
DINO are used but less so when a stronger encoder is employed. These collective
findings suggest that the coupling of DINOv2 with a downstream classification
architecture, such as WSL or EchoFM, can considerably enhance the baseline
performance of PH classification derived from TTE videos. With SimCLR as the
training mechanism, the EchoFM method achieves an AUC score of 0.77 ± 0.01,
F1 score of 0.80 ± 0.01, and accuracy of 0.71 ± 0.02. Despite these metrics being
lower than those achieved with EchoFM using DINOv2, they still significantly
surpass the baseline model. This comparison accentuates the efficacy of modern
encoders for risk disease assessment from TTE.
Ablation Study: Table 4 details our ablation study, evaluating the impact of
DINOv2 pre-training and EchoFM architecture on model performance. Replac-
ing DINOv2 with ImageNet pre-trained ResNet(34) reduced AUC by 0.10, F1
score by 0.04, and accuracy by 0.05, highlighting DINOv2’s critical role. Sub-
stituting EchoFM with a weakly-supervised Attention CNN decreased AUC by
0.01, and both F1 score and accuracy by 0.03, indicating the Transformer’s slight
but positive impact. Limiting DINOv2 to single-view (A4c) pre-training, perfor-
mance dropped: AUC by 0.05, F1 score and accuracy by 0.01, underscoring the
benefits of multi-view analysis for PH assessment.
Generalization Study: Our cross-validation analysis demonstrates our model’s
generalization across different datasets. Specifically, when trained on the Sheffield
dataset and tested on CIPHER (see Tab. 1), the model achieved an AUC of 0.73
± 0.02, F1 score of 0.88 ± 0.01, and accuracy of 0.81 ± 0.01. Conversely, training
on CIPHER and testing on Sheffield yielded an AUC of 0.70 ± 0.02, F1 score
of 0.85 ± 0.01, and accuracy of 0.75 ± 0.01 (see Tab. 5). These results validate
the model’s robustness and generalization capability, though performance vari-
ations suggest dataset-specific influences, warranting further investigation into
the model’s adaptability to different data distributions.
Intepretability via Self-Attention Maps: The EchoFM architecture fea-
tures a three-tiered attention granularity beneficial for clinical interpretability:
video-, frame-, and pixel-level attention, as shown in Fig. 2. Video-level attention
(Fig. 2(a)) enables clinicians to identify significant views for PH risk assessment,
aligning with standard clinical protocols for PH diagnostics [10]. Frame-level
attention highlights frame-wise features critical for PH diagnosis, such as the

Method Training Mechanism AUC Score F1 Score Accuracy

Weakly Supervised
(+Attention)

SimCLR 0.65 ± 0.04 0.70 ± 0.15 0.61 ± 0.12
DINO 0.76 ± 0.01 0.78 ± 0.08 0.69 ± 0.08

DINOv2 0.79 ± 0.01 0.84 ± 0.01 0.76 ± 0.02

EchoFM
SimCLR 0.77 ± 0.01 0.80 ± 0.01 0.71 ± 0.02

EchoFM DINO 0.79 ± 0.01 0.85 ± 0.02 0.77 ± 0.02
DINOv2 0.80 ± 0.01 0.87 ± 0.01 0.79 ± 0.02

Table 3. Comparative evaluation of performance metrics for the WSL (+Attention)
and EchoFM methods with different training mechanisms.



8 Fadnavis, S. et al.

FM (view) Classifier AUC Score F1 Score Accuracy
ImageNet (multi) EchoFM 0.70 ± 0.02 (↓ 0.10) 0.83 ± 0.03 (↓ 0.04) 0.74 ± 0.03 (↓ 0.05)
DINOv2 (multi) WSL 0.79 ± 0.01 (↓ 0.01) 0.84 ± 0.01 (↓ 0.03) 0.76 ± 0.02 (↓ 0.03)
DINOv2 (single) EchoFM 0.75 ± 0.03 (↓ 0.05) 0.86 ± 0.02 (↓ 0.01) 0.78 ± 0.03 (↓ 0.01)

Table 4. Ablation study assessing the impact of substituting components of our pro-
posed DINOv2 + EchoFM model.

Fig. 2. Video, frame and pixel-wise attention vales for single patient. (a) Mean(top)
and framewise attention for all (a) or selected subset (b) views and frames (c). (d)
DINOv2 attention maps overlaid on actual frames for frame-level interpretability.

flattened interventricular septum and right ventricle enlargement, observable in
PSAX and A4c views (Fig. 2(b)). Pixel-level attention, depicted in Fig. 2(c),
overlays attention maps on frames to pinpoint diagnostic indicators at a granu-
lar level. This structured attention mechanism aids in the clinical interpretation
and validation of the model’s analytical focus.
6 Conclusion
We introduce EchoFM, a novel Transformer-based method for differential di-
agnosis of pulmonary hypertension from TTE videos. Our method, leveraging
Weakly Supervised Learning, outperforms conventional attention-based CNNs

Train Test AUC Score F1 Score Accuracy
Sheffield CIPHER 0.73 ± 0.02 0.88 ± 0.01 0.81 ± 0.01
CIPHER Sheffield 0.70 ± 0.02 0.85 ± 0.01 0.75 ± 0.01

Table 5. Model performance in cross-dataset validation. Metrics are reported for train-
ing on four folds of one dataset and testing on the other, and vice versa.
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when pre-trained with DINOv2, offering superior classification without needing
specific view detection. EchoFM provides permutation invariance, effectively an-
alyzing frames regardless of sequence. Ablation studies highlight the importance
of DINOv2 pre-training and the transformer structure, particularly for integrat-
ing multiple views for accurate heart disease analysis. The method’s adaptability
is proven in real-world datasets which include other, “mimicking” cardiovascular
or respiratory conditions as PH-negative cases. Finally, EchoFM highlights crit-
ical attention maps within video frames, improving interpretability and aiding
in diagnostic insights.

Disclosure of Interests. All authors were employees of Janssen R&D, LLC,
and may own company stock/stock options.
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