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Abstract. Grading of prostate cancer plays an important role in the
planning of surgery and prognosis. Multi-parametric magnetic resonance
imaging (mp-MRI) of the prostate can facilitate the detection, localiza-
tion and grade of prostate cancer. In mp-MRI, Diffusion-Weighted Imag-
ing (DWI) can distinguish a malignant neoplasm from benign prostate
tissue due to a significant difference in the apparent diffusion sensitivity
coefficient (b-value). DWI using high b-value is preferred for prostate
cancer grading, providing high accuracy despite a decrease signal-to-
noise ratio and increased image distortion. On the other hand, low b-
value could avoid confounding pseudo-perfusion effects but in which the
prostate normal parenchyma shows a very high signal intensity, making
it difficult to distinguish it from prostate cancer foci. To fully capitalize
on the advantages and information of DWIs with different b-values, we
formulate the prostate cancer grading as a multi-view classification prob-
lem, treating DWIs with different b-values as distinct views. Multi-view
classification aims to integrate views into a unified and comprehensive
representation. However, existing multi-view methods cannot quantify
the uncertainty of views and lack a interpretable and reliable fusion
rule. To tackle this problem, we propose uncertainty-aware multi-view
classification with uncertainty-aware belief integration. We measure the
uncertainty of DWI based on Evidential Deep Learning and propose
a novel strategy of uncertainty-aware belief integration to fuse multiple
DWIs based on uncertainty measurements. Results demonstrate that our
method outperforms current multi-view learning methods, showcasing its
superior performance.

Keywords: Prostate Cancer Grading · Diffusion-Weighted Imaging ·
Evidential Multi-View Learning.
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1 Introduction

Prostate cancer has emerged as one of the most commonly diagnosed cancers and
a major contributor to mortality among men [22]. Accurate grading of prostate
cancer is crucial for guiding surgical decisions and predicting prognosis [18, 16].
Diffusion-Weighted Imaging (DWI) plays a pivotal role in prostate cancer grad-
ing as it serves as the primary sequence for evaluating prostate cancer in the
peripheral zone [26]. The diffusion sensitivity coefficient (b-value) is indicative
of the level of diffusion weighting. Typically, many researchers prefer to use a
low b-value (500-1000 s/mm2) since it has high signal-to-noise ratio and can
mitigate potential pseudo-perfusion effects [19]. However, the normal prostate
parenchyma in DWI with low b-value exhibits a very high signal intensity, pos-
ing a challenge in distinguishing it from prostate cancer foci [13]. On the other
hand, high b-value (1500-2000 s/mm2) can improve the contrast between tumor
and normal tissue but lead to a reduction in signal-to-noise ratio [4]. This in-
spired us to effectively integrate DWIs using different b-values to achieve precise
grading of prostate cancer.
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Fig. 1. The workflow of multi-view fusion based on uncertainty measurement.

Multi-view classification has been proven to be effective in integrating var-
ious sources to enhance classification accuracy [10, 2, 8, 1, 20, 3, 5]. Due to the
multi-view learning method can adaptively integrate correlational information
from different views, many multi-view methods have been proposed for the grad-
ing, staging and segmentation of cancer using US, CT or MRI [15, 27, 6, 25, 11].
Therefore, it’s nature to apply multi-view learning to fuse DWIs with multiple
b-values. However, the relevant work for fuse DWIs is limited and the current
multi-view learning methods cannot measure the uncertainty associated with
each view, i.e., the reliability of DWIs with different b-values and their inte-
gration rule lacks interpretability, rendering them unreliable for prostate cancer
grading.
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Fig. 2. Module overview. The overall process of the proposed method can be divided
into two steps: (1) The view-specific evidential neural network learns evidence and
use subjective logic to form uncertainty and uncertainty-aware belief integration is
employed to fuse results from multiple DWIs. (2) During the testing phase, we not
only obtain an interpretable fusion result but also discern the reliability of DWIs with
different b-values using our method.

To address the problem above, we innovatively apply multi-view learning
to integrate DWIs with b-values for the prediction of prostate cancer grading
and integrate the multi-view classification with the theory of evidential uncer-
tainty measurement. Based on Evidential Deep Learning (EDL) [23], we assess
the uncertainty of DWIs with different b-values. On these grounds, we introduce
an innovative fusion strategy of uncertainty-aware belief integration, which in-
tegrates views directly based on their uncertainty measurements. In this way,
we can assess the reliability of each specific DWI with a certain b-value and ob-
tain interpretable fusion results. The contributions of this paper are summarized
below.

(1) We apply deep multi-view learning to the fusion of prostate cancer DWIs
with multiple b-values, which can enhance the accuracy of prostate cancer
grading.

(2) We incorporate uncertainty measure into the deep multi-view learning, ren-
dering the DWI fusion interpretable and evaluate the reliability of the imag-
ing under different b-values.

2 Method

The workflow and overview of our method is illustrated in Figure 1 and 2. Ini-
tially, we formulate prostate cancer grading with DWIs using different b-values
as a multi-view learning problem. Furthermore, we employ the Evidential Deep
Learning (EDL) [23] to formulate the Dirichlet distribution and the opinion for
each view (b-value). Subsequently, we adopt uncertainty-aware belief fusion to
integrate opinions from multiple views. As a result, we can obtain the fusion
results for prostate cancer grading.
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2.1 Uncertainty Measure of Data Views

Referring to the aforementioned, we apply Evidential deep learning to quan-
tify the uncertainty of DWIs with different b-values, enabling uncertainty-aware
multi-view fusion. Specifically, given a DWI xv under bv-value v ∈ {1, 2, ..., V }
(lower sequence indices v correspond to lower b-value), EDL assumes a Dirich-
let distribution Dir(P v|αv) to model the distribution of categorical probability
P v ∈ RK , where αv ∈ RK is the parameters of Dirichlet distribution. After
that, the opinion Mv = {{bvk}Kk=1, u

v} can be derived based on Subjective Logic
[12], denoted as

bvk =
αv
k − 1

Sv
=

evk
Sv

, uv =
K

Sv
, (1)

where evk is the non-negative evidence collected from kth class by EDL and Sv =∑K
k=1 α

v
k represents the Dirichlet strength. The EDL is trained by minimizing

the negated logarithm of the marginal likelihood, given by

Lnll(α
v
i ) =

K∑
k=1

yik (log (S
v
i )− log (αv

ik)) , (2)

for a sample xi containing multiple DWIs with different b-values of class k, yik
is the one-hot vector encoding the ground-truth class of xi, yik = 1 and yij = 0
for all j ̸= k, αv

i is the parameters of Dirichlet distribution of xi belonging to K
classes on bv-value.

The objective of EDL only ensures higher evidence for the correct class, ignor-
ing low evidences for incorrect classes, leading to unreasonably low uncertainty.
We address this by introducing KL divergence, denoted as

Lkl (α̃
v
i ) = KL (Dir (pv

i | α̃v
i ) ∥Dir (pv

i | 1)) , (3)

where α̃v
i = yi +(1− yi)⊙αi is the adjusted Dirichlet parameters. Finally, the

objective for a single DWI is

L(αv
i ) = Lnll(α

v
i ) + λtLkl (α̃

v
i ) (4)

where λt = min{1, t/10} is the the annealing coefficients to prevent the model
from learning a uniform Dirichlet distribution in the early stage of training.

2.2 Uncertainty-Aware Multi-View Belief Integration

Based on the derivation of belief mass and uncertainty measure, we propose
a novel fusion rule named Uncertainty-Aware Belief Integration to obtain the
fusion results of multi-view DWIs with different b-values.

Definition 1. Uncertainty-Aware Belief Integration. Specifically, given a
data composed of V multiple views (DWIs under v b-values), the final opinion
M = {{b⋄̂k}Kk=1, u

⋄̂} after integration can be calculated from the opinion Mv =
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{{bvk}Kk=1, u
v} collected by each view-specific neural network, which can be written

as

b⋄̂k =
e⋄̂k
S

=

∑V
v=1e

v
k(1− uv)∑V

v=1(1− uv)∑K
k=1

∑V
v=1e

v
k(1− uv)∑V

v=1(1− uv)
+K

=

∑V
v=1e

v
k(1− uv)∑V

v=1S
v(1− uv)

, (5)

u⋄̂ =
K

S
=

K∑K
k=1

∑V
v=1e

v
k(1− uv)∑V

v=1(1− uv)
+K

=

∑V
v=1(1− uv)∑V
v=1(

1

uv
− 1)

. (6)

Proposition 1. Incorporating a DWI with high uncertainty (uv → 1) into the
original fusion result cannot significantly impact the integrated uncertainty.

Proof. Let δ → 0+ be the sum of evidence given by the new DWI with high
uncertainty (uv → 1), we have

lim
δ→0+

ũ⋄̂ = lim
δ→0+

∑V
v=1(1− uv) + δ

δ+K∑V
v=1(

1

uv
− 1) + δ

K

=

∑V
v=1(1− uv)∑V
v=1(

1

uv
− 1)

= u⋄̂. (7)

This proposition means that our method assigns weights dynamically based
on the uncertainty of DWI with different b-values.

Proposition 2. Let u⋄̂ be the integrated uncertainty after belief combination,
{uv}Vv=1 be the uncertainty from V views, we have umin ≤ u⋄̂ ≤ umax, where
umax = max{uv}Vv=1 and umin = min{uv}Vv=1.

Proof.

u⋄̂ ≥
∑V

v=1 (1− uv)∑V
v=1(

1−uv

umin
)

= umin (8)

u⋄̂ ≤
∑V

v=1 (1− uv)∑V
v=1(

1−uv

umax
)

= umax (9)
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This range ensures the quality of the integrated uncertainty measurement
in the context of prostate cancer grading, reducing the challenges caused by
extremely low or high b-values like confounding pseudo-perfusion effect or high
signal intensity.

To alleviate the conflict between views, we enhance our proposed method
by introducing a cross view conflict regulation. We use an exponential evidence
function to predict the evidence for each view, i.e., evi = exp(zv

i ) where zv
i is the

logits produced by the last layer. The gradient gvik of Lnll(α
v
i ) belonging to kth

class can be derived

gvik = ∇zv
ik
Lnll (α

v
i ) = yik

[
Sv
i −Kαv

ik

Sv
i α

v
ik

]
= yik

[
1

αv
ik

− uv
i

]
. (10)

We see that the gradient will be scaled depending on the uncertainty and how
much Dirichlet parameter αv

ik is placed on the correct class. We minimize the
discrepancy between these different gradient vectors. The consistency regulation
loss is derived as

Lcons({αv
i }

V
v=1) =

V−1∑
v=1

V∑
m=v+1

∣∣|gvi − gmi
∣∣|, (11)

by which the gradients of different views are aligned.
To simultaneously foster reasonable opinions across all views, we employ a

multi-task strategy with an integrated loss function

Loverall =

N∑
i=1

[
V∑

v=1

L(αv
i ) + L(α⋄̂

i ) + λLcons({αv
i }

V
v=1)

]
. (12)

where λ = 0.1 denotes the trade-off hyper-parameter.

3 Experiments

3.1 Dataset and Implementation Details

We apply our method to a real-world prostate cancer DWI dataset collected
by Ma’anshan People’s Hospital. The dataset consist of 134 patients with be-
nign prostatic hyperplasia (BPH), 37 patients with clinically significant prostate
cancer (cs-PCa), 64 patients with non-clinically significant prostate (ncs-PCa)
cancer. For all patients, we obtained their DWIs with b-values of 500, 1500 and
2000 s/mm2, serving as three views for model input. The total number of DWIs
from each b-value is 2144. Our method utilized ResNet18 [9] as our feature ex-
tractor for all views. The Adam optimizer [14] with an l2-norm regularization
set at 1e-5 is employed to train the whole framework. The learning rate is deter-
mined through a 5-fold cross-validation procedure, selecting from the learning
rate candidates: {1e-4, 3e-4, 1e-3, 3e-3}. The whole framework is implemented
by PyTorch on one NVIDIA TITAN Xp with GPU of 12GB memory.
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Table 1. Comparison with state-of-the-art multi-view learning methods. The best
results are bolded and the second best results are underlined.

Method ACC AUC ECE F1-Score
Early Fusion 80.33±1.01 85.93±1.96 0.151±0.011 72.17±0.45
DCCAE [24] 79.33±2.14 82.34±1.17 0.174±0.059 70.77±0.68

TMC [7] 83.04±0.37 91.98±0.63 0.078±0.046 72.50±0.91
SMDC [17] 82.98±0.52 86.70±1.40 0.094±0.73 74.63±1.29

Ours 86.70±0.54 93.39±0.99 0.073±0.013 80.26±0.43

Table 2. Ablation study, "✓" means ours with the corresponding component, "-"
means "not applied".

Main Components Metric
Fusion Lcons Lkl ACC AUC

- - - 72.20 82.37
✓ - - 82.91 85.97
✓ ✓ - 84.23 92.99
✓ - ✓ 84.45 92.03
✓ ✓ ✓ 86.70 93.39

3.2 Test of Improvement with Multi-View Fusion

In this section, we experimentally validated the effectiveness of our fusion method
compared to different multi-view learning methods and solely using a single b-
value and conduct ablation study.

Results shown in Table 1 show that our method outperforms all methods
in terms of different metrics. For example, our method improves the accuracy
and AUC by about 6.37% and 7.46% compared to Early Fusion, indicating that
the quality of uncertainty measurement for each view obtained by our method
is high, leading to better outcomes after uncertainty-aware integration. Further-
more, the test ECE of our method outperforms all, indicating our model has
been well calibrated.

Furthermore, We perform the experiments to investigate the effectiveness of
KL divergence and cross-view gradient regulation. As shown in Table 2, it is
obvious that all the components we proposed contribute to the improvement
of the model’s performance. Furthermore, we compare our method with those
solely using single b-value DWI for grading. The results in Fig. 3 (a) indicate that
our method could exploit and integrate information from DWIs with multiple
b-values, enhancing the performance of prostate cancer grading.

3.3 Measure Uncertainty of DWIs with b-values

In this test, we measure the uncertainty of DWIs with different b-values and
present some typical examples.
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(a) Classification Performance Comparison. (b) Uncertainty Estimation.

Fig. 3. (a) The curves in blue and other color correspond to accuracy of our method
integrating DWIs under multiple b-values and ResNet18 solely using single b-value. (b)
Uncertainty estimation after integration. Blue represents the original DWI dataset, and
green represents DWIS after adding gaussian noise.

(a) cs-PCa. (b) ncs-PCa.

Fig. 4. Typical samples of cs-PCa (a) and ncs-PCa (b). Uncertainties of DWIs with
multiple b-values have been estimated by our model. u1, u2 and u3 correspond to DWIs
with b-value = 500, 1500 and 2000 s/mm2, respectively. Please refer to supplementary
materials for more typical examples

First, we estimate the integrated uncertainty on the modified dataset, in
which we added gaussian noise to all DWIs. The Gaussian kernel density esti-
mation [21] of learned uncertainty is shown in Fig. 3 (b). It can be found that
the estimated uncertainty is closely related to the quality of DWI, validating
that our method are aware of the quality of DWI with each b-value.

Next, we present two typical examples to validate the effectiveness of our
fusion method in terms of uncertainty estimation. As show in Fig. 4, because
the tumor regions of prostate cancer are challenging to distinguish on low b-
value DWI and high b-value DWI has a high signal-to-noise ratio and low image
quality, DWI with extremely low b-value (500 s/mm2) and high b-value (2000
s/mm2) tend to have higher uncertainty, demonstrating that our approach can
accurately measure the uncertainty of DWI.

4 Conclusion

In this paper, we introduce a uncertainty-aware multi-view learning method for
prostate cancer grading. Utilizing Evidential Deep Learning, we formulate the
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uncertainty of DWIs with various b-values based on Subjective Logic. Further-
more, our proposed uncertainty-aware belief fusion focuses on exploring and
exploiting the uncertainty obtained by EDL. As a result, we can not only cap-
ture the uncertainty of DWIs with different b-values and the fusion results are
interpretable.
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