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Abstract. Diagnosis of mild cognitive impairment (MCI) and subjec-
tive cognitive decline (SCD) from fMRI functional connectivity (FC) has
gained popularity, but most FC-based diagnostic models are black boxes
lacking casual reasoning so they contribute little to the knowledge about
FC-based neural biomarkers of cognitive decline. To enhance the ex-
plainability of diagnostic models, we propose a generative counterfactual
attention-guided network (GCAN), which introduces counterfactual rea-
soning to recognize cognitive decline-related brain regions and then uses
these regions as attention maps to boost the prediction performance of
diagnostic models. Furthermore, to tackle the difficulty in the generation
of highly-structured and brain-atlas-constrained FC, which is essential
in counterfactual reasoning, an Atlas-Aware Bidirectional Transformer
(AABT) method is developed. AABT employs a bidirectional strategy to
encode and decode the tokens from each network of brain atlas, thereby
enhancing the generation of high-quality target label FC. In the experi-
ments of hospital-collected and ADNI datasets, the generated attention
maps closely resemble FC abnormalities in the literature on SCD and
MCI. The diagnostic performance is also superior to baseline models.
The code is available at https://github.com/SXR3015/GCAN.
Keywords: Cognitive decline diagnostics · Counterfactual reasoning ·
Attention · fMRI · Functional connectivity.

1 Introduction
Diagnosing mild cognitive impairment (MCI) and subject cognitive decline (SCD)
is vital for early intervention of Alzheimer’s disease (AD). The fMRI-based func-
tional connectivity (FC) abnormalities at network level [1] and/or region level
[2] have been extensively in the research of MCI and SCD. FC is normally cal-
culated as Pearson’s Correlation Coefficients among fMRI signals on a set of
predefined regions of interest (ROIs) derived from an anatomical or functional
atlas. Based on FC, researchers have developed a great number of diagnostic
models using deep learning methods, such as those based on convolution neural
network (CNN) [3] or Transformer [4]. However, these models are normally a
black-box so important FC and related brain regions that are predictive of SCD
or MCI still remain unclear. Some explainable models, such as Grad-CAM [5]
and Score-CAM[6], have been popularly used in other fields like computer vi-
sion. However, they have generated explanation results using gradient backward
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based on the classification result labels. These methods often produce similar
explanation results across incorrect class labels. Recently, counterfactual reason-
ing has emerged, creating the model’s output in hypothetical scenarios, which
directly generate explanation results, thus circumventing erroneous inference re-
sults based on result labels.

In the related research of MRI, Oh et al. applied counterfactual reasoning
to structural MRI for the diagnosis of AD and MCI [7]. Ren et al. also used
counterfactual reasoning in the detection of brain lesions [8]. However, applying
counterfactual reasoning to FC presents challenges due to the strong structural
characteristics of the brain atlas, making the reconstruction of the target FC
difficult and thereby complicating the counterfactual reasoning architecture.
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Fig. 1. The proposed Generative Counterfactual Attention-guided Network (GCAN)
interpretatively enhances the diagnosis of cognitive decline by identifying key brain
regions (referred to as ’counterfactual attention’) involved in the transition between
healthy, SCD, and MCI brain states, based on their functional connectivity (FC) ma-
trix. This approach offers a bidirectional view of counterfactual attention that, once
integrated with the original FC matrix, guides the classifier’s focus to these regions
throughout the learning process. The positive (+) and negative (−) signs symbolize
two perspectives within the attention map, reflecting the inversion of causal relation-
ship positions-source and target-in counterfactual inference.

To construct the counterfactual reasoning architecture for FC-based diag-
nostic models, we introduce the Generative Counterfactual Attention-Directed
Network (GCAN) for identifying predictable FC features and related brain re-
gions. These regions are then used as counterfactual attention maps onto FC
matrices to increase the prediction performance. To tackle the challenge of gen-
erating FC, we devised an Atlas-aware Bidirectional Transformer (AABT) to
reconstruct FC within the GCAN framework. The main contributions of this
paper are twofold:
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1) We introduce a counterfactual reasoning architecture to detect cognitive
decline-related regions. The architecture is shown in Fig. 1.
• training stage: We develop GCAN to generate the target label FC.

Subsequently, we compute the difference between the target label FC
and the source label FC to construct the counterfactual attention for all
source labels.

• prediction stage: The new diagnostic model is initialized with atten-
tion on cognitive decline-related regions by aggregating all counterfac-
tual attention and applying the resulting total attention map to FC.
Subsequently, this masked FC matrix is used to train the new diagnostic
model.

2) AABT is introduced for generating highly structured FC. It can dynamically
encode and decode the FC based on individual networks of atlas. To offer
a better understanding of both encoding and decoding FC, we employ a
bidirectional structure including forward and backward process to handle
token encoding and decoding.

2 Method

2.1 Generative Counterfactual Attention-guided Network (GCAN)

The proposed GCAN consists of a Generator and a Discriminator, each rooted
in the principles of counterfactual inference. The fundamental architecture of
both the generator and discriminator is the AABT, as detailed in Section 2.2.

Generator As illustrated in Fig. 2, the generator begins by combining Gaussian
noise and the FC matrix with the source label, denoted as input Cs

n. This input
is then transformed into a feature map by the AABT encoder. Following this
transformation, an AABT decoder, which mirrors the AABT encoder in archi-
tecture, reconstructs the feature map into a generated FC matrix, represented as
Cs

g . To derive counterfactual attention, the mean FC matrix associated with the
target label undergoes encoding by the AABT to yield an average feature map
of the target class, denoted as Ct

r. This map contains the causal information nec-
essary for counterfactual inference. It is then combined with Cs

g to facilitate the
inference of the target FC matrix, denoted as Ct

g. To ensure Cs
g and Ct

g closely
mirror FC matrices, the generator loss includes perceptual (Lp), generative (Lg),
and label cross-entropy (Lc) losses. Lp and Lg maintain FC characteristics for
Cs

g , while Lc ensures Ct
g’s accuracy in target labeling, verified by a pre-trained

classifier (CLS). The total loss, LG, is defined as follows:

Lp = MSE
(
V GG

(
Cs

g

)
, V GG (Cs

r )
)
, (1)

Lgen = MSE
(
Cs

g , C
s
r

)
, (2)

Lc = CE
(
CLS

(
Ct

g

)
, yt

)
, (3)

LG = Lp + Lc + Lgen, (4)

where MSE represents the mean square error, V GG represents VGG16 network,
and CE represents cross-entropy, yt represents the expected target label.
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Fig. 2. The proposed GCAN is illustrated as follows: The generator starts with a
noisy source label input, Cs

n, using it to reconstruct the source label’s FC. It also
extracts disease-related causal information from the dataset’s mean target label FC,
Ct

r. This causal information is then leveraged to transform the reconstructed source
label FC into the target label FC, Ct

g. On the other side, the discriminator employs
components sensitive to both imaging features and neurodegenerative indicators to
verify that Ct

g not only mimics the FC characteristics accurately but also encapsulates
distinct cognitive information differentiating it from Cs

r .

Discriminator The discriminator of GCAN, detailed in Fig. 2, ensures the fi-
delity of Ct

g and Cs
g through two main components: AABT image and AABT

neurodegeneration. The image component evaluates Cs
g ’s FC characteristics align

with Cs
r , indicated by loss Lc

d. The neurodegeneration component focuses on
identifying cognitive decline features within FC matrices, aiding in accurate sub-
ject classification by a pre-trained classifier. It employs cross-entropy loss Lsl

d to
align features of Cs

g with the source label and Ltl
d for matching Ct

g features with
the target label. Additionally, mean square error LD

d measures the distinction be-
tween feature maps of Cs

g and Ct
g, promoting discriminative learning of cognitive

features.

Lc
d = mean

{
log
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1− S
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}
(5)
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d + LD

d (9)
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where Di represents the image discriminator and Dn represents the neurodegen-
eration discriminator, ys represents the source label.

2.2 Atlas-aware Bidirectional Transformer
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Fig. 3. The AABT mechanism involves the dynamic configuration of patch embedding
and inverse patch embedding, contingent on the network’s region count, facilitating
both forward and backward processes. Here, pw and ph specify patch width and height,
respectively, while n∗ indicates the network’s region total.

Directly inputting the FC of all atlas networks into the Transformer block
could result in uniform attention across all region correlations. Inspired by the
vision Transformer [9] and the atlas-aware framework in fMRI [10], the basic
block of AABT is designed to dynamically focus on the correlation of the cur-
rent atlas network. The bidirectional structure including patch embedding and
inverse patch embedding is employed to encode and decode the correlation in
the Transformer. The patch embedding serves as the forward process to encode
the input (FC or feature map) into tokens, while inverse patch embedding acts
as the backward process to decode the tokens into outputs (FC or feature map).
The combination of patch embedding and inverse patch embedding aims at en-
coding and decoding the current network correlation with a global perspective,
aiding the model in understanding the current network correlation during both
encoding and decoding processes. Initially, the input FC is divided into net-
works, including CER (cerebellum network), CON (cingulo-opercular network),
DMN (default mode network), OCC (occipital network), FPN (fronto-parietal
network), and SMN (sensorimotor network). During patch and position embed-
ding, patch height matches each network’s region count, with patch width set
at 16. Tokens from these embeddings undergo self-attention and feed-forward
blocks for encoding. For decoding, inverse patch embedding recreates the FC or
feature map. The FC decoding relies on a narrowly focused convolutional net-
work [11]. Inverse patch embedding decodes FC in the Transformer, offering a
global view, as shown in Fig. 3. The output O of AABT is defined as follows:

O = C
{
P̃i [SAi (Pi (Si (I)))]

}
(10)
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where I represents the input feature map or FC, i represents i-th network of
FC, Si represents network segmentation, Pi represents the patch embedding and
position embedding operation, SA represents self attention and feed forward, P̃i

represents inverse patch embedding, C represents concatenation operation.

3 Experiments and Results

3.1 Dataset and Experiment Setup

Dataset In this study, both hospital-collected data and Alzheimer’s Disease
Neuroimaging Initiative (ADNI) data are employed to train and validate the
proposed method. The hospital-collected data comprises 77 HC, 75 SCD pa-
tients, and 99 MCI patients. The ADNI data consists of 67 HC, 22 SCD patients,
and 95 MCI patients. The data undergo preprocessing using SPM12 [12], includ-
ing slice-timing correction, head motion estimation and correction, intra-subject
registration, and co-registration.

Experiment Setup The depth of the Transformer in the encoder and decoder
of the generator is set to 3, while in the image and neurodegeneration discrim-
inator part, it is set to 8. Other hyperparameters of the model can be found in
the code. The performance of the pre-trained and final classifiers is evaluated
using accuracy (ACC), recall, precision, and F1-score (F1).

3.2 Results
Diagnostic Performance To validate the diagnostic performance, baseline
models are constructed based on the following formulations:

• R∗ represents either ResNet10 or ResNet18 [13]. T∗ symbolizes a Trans-
former with varied multi-head self-attention counts. ’B’ means 16 Trans-
former heads, ’L’ for 32, and ’S’ for 8. ’A’ marks the addition of channel
attention, a prevalent attention mechanism [14].

• R ∗ // indicates diagnostic model solely constructed by ResNet. RA signifies
the diagnostic model constructed using ResNet and channel attention. RT∗
denotes the diagnostic model constructed using ResNet and Transformer.

The proposed method employs ResNet10 and Transformer with 16 heads. While
the baseline model directly inputs FC, the proposed method inputs FC masked
by counterfactual attention. As demonstrated in Table 1, the proposed method
achieves superior diagnostic performance across three tasks and two datasets.

Counterfactual Attention Map During the neurodegeneration process from
HC to MCI, significant FC changes occur in regions such as the prefrontal cortex,
cingulate cortex, and hippocampus [15]. Similarly, during intervention in MCI,
significant changes are observed in the FC of regions like the cingulate cortex and
gyrus [16]. Hence, throughout the conversion process of each binary diagnostic
task, most attention regions should remain consistent with slight variations. In
Fig. 4, the attention of each FC region is calculated and depicted using BrainNet
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Table 1. The diagnostic performance of binary diagnostic task (HC vs. SCD, HC vs.
MCI, and SCD vs. MCI) on hospital-collected and ADNI datasets.

Hospital ADNI
Acc Recall Precision F1 Acc Recall Precision F1

HC
vs.

SCD

R10

// 0.8333 0.4667 1.0000 0.6364 0.6786 0.7823 0.6130 0.6874
A 0.8667 0.6667 0.8000 0.7273 0.6905 0.8413 0.6033 0.7027

T-S 0.8000 0.4000 0.8000 0.5333 0.6190 0.3764 0.6667 0.4812
T-B 0.8000 0.4000 0.8000 0.5333 0.6667 0.6049 0.6627 0.6325
T-L 0.8000 0.4000 0.8000 0.5333 0.6049 0.7078 0.5802 0.6377

R18

// 0.8000 0.4000 0.8000 0.5333 0.6905 0.5510 0.6648 0.6026
A 0.8000 0.4000 0.8000 0.5333 0.6310 0.3220 0.7143 0.4439

T-S 0.8000 0.4000 0.8000 0.5333 0.6207 0.3739 0.6345 0.4705
T-B 0.8000 0.5333 0.6800 0.5978 0.6543 0.3128 0.6614 0.4247
T-L 0.8000 0.4000 0.8000 0.5333 0.6420 0.4815 0.6587 0.5563

Proposed 0.9333 0.8667 1.0000 0.9286 0.7284 0.6667 0.7445 0.7035

HC
vs.

MCI

R10

// 0.6552 0.9004 0.6552 0.7585 0.6562 0.8611 0.6456 0.7379
A 0.6458 0.9167 0.6331 0.7490 0.6207 0.9632 0.6137 0.7497

T-S 0.6437 0.8812 0.6381 0.7402 0.6146 0.8542 0.6102 0.7119
T-B 0.6322 0.8084 0.6528 0.7223 0.6458 0.9514 0.6193 0.7502
T-L 0.6667 0.9195 0.6468 0.7594 0.6465 0.8364 0.6505 0.7318

R18

// 0.7126 0.9080 0.7125 0.7985 0.6667 0.6929 0.6729 0.6828
A 0.7011 0.7739 0.7755 0.7747 0.6458 0.7986 0.6468 0.7147

T-S 0.6782 0.8889 0.6629 0.7594 0.6458 0.8194 0.6610 0.7317
T-B 0.6437 1.0000 0.6247 0.7690 0.6667 0.7847 0.6724 0.7242
T-L 0.6207 0.8927 0.6243 0.7348 0.6354 0.6736 0.7037 0.6883

Proposed 0.7471 0.9816 0.7056 0.8210 0.6970 0.8653 0.6709 0.7558

SCD
vs.

MCI

R10

// 0.7778 0.9392 0.8133 0.8717 0.6989 0.7233 0.7610 0.7417
A 0.8500 1.0000 0.8500 0.9189 0.6989 0.7247 0.7552 0.7396

T-S 0.7692 1.0000 0.7692 0.8695 0.7204 0.7864 0.7935 0.7899
T-B 0.7692 1.0000 0.7692 0.8695 0.6989 0.9541 0.6726 0.7890
T-L 0.7949 1.0000 0.7857 0.8800 0.6989 0.8380 0.7097 0.7685

R18

// 0.7949 1.0000 0.7857 0.8800 0.6774 0.9828 0.6523 0.7841
A 0.8500 1.0000 0.8500 0.9189 0.7097 0.8165 0.7322 0.7721

T-S 0.7692 1.0000 0.7692 0.8695 0.6989 0.8509 0.6943 0.7647
T-B 0.8205 1.0000 0.8047 0.8918 0.6667 0.6344 0.7586 0.6910
T-L 0.7692 1.0000 0.7692 0.8695 0.6882 0.9140 0.6779 0.7784

Proposed 0.9487 0.9707 0.9615 0.9661 0.7312 0.8656 0.7307 0.7924

Viewer [17]. Prominent attention regions across different conversion processes in
diagnostic tasks, including HC vs. MCI, HC vs. SCD, and SCD vs. MCI, show
considerable overlap, although some regional differences exist. These findings
align closely with previously reported research. The networks of the top 10 re-
gions in the counterfactual attention are outlined in Table 2. These networks are
highly associated with cognitive decline [18, 19]. Hence, the significant regions
identified by counterfactual attention are strongly linked to neurodegeneration.

Ablation study To validate the benefits of counterfactual attention, we con-
duct an ablation study on the same diagnostic model. One model inputs FC
directly, while the other inputs FC masked by counterfactual attention. As de-
picted in Table 3, the model utilizing counterfactual attention has superior di-
agnostic performance across three tasks and two datasets.
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Table 2. The network of top 10 regions at the counterfactual attention in HC vs. MCI,
HC vs. SCD, and SCD vs. MCI diagnostic task.

HC vs. SCD + FPN DMN SMN CON OCC SMN OCC CON CER FPN
− FPN DMN SMN OCC CON SMN FPN CON DMN SMN

HC vs. MCI + FPN SMN FPN OCC SMN DMN CER OCC DMN FPN
− FPN SMN FPN OCC SMN FPN DMN CON CER OCC

SCD vs. MCI + DMN SMN CON DMN FPN DMN FPN CER SMN DMN
− FPN DMN CER SMN SMN SMN CON DMN CON OCC

Counterfactual  
attention

HC vs . SCD HC vs. MCI SCD vs. MCI

Source

Target

+ 

-

+

-

─

-

+

-

─

--

─ 

Fig. 4. The generated target label FC and counterfactual attention in HC vs. MCI,
HC vs. SCD, and SCD vs. MCI diagnostic task.

Table 3. Ablation study on hospital-collected and ADNI datasets.
Counterfactual

attention
Hospital ADNI

Acc Recall Precision F1 Acc Recall Precision F1

HC vs. SCD ✗ 0.80000 0.4000 0.8000 0.5333 0.6667 0.6049 0.6627 0.6325
✔ 0.9333 0.8667 1.0000 0.9286 0.7284 0.6667 0.7445 0.7035

HC vs. MCI ✗ 0.6322 0.8084 0.6528 0.7223 0.6458 0.9514 0.6193 0.7502
✔ 0.7471 0.9816 0.7056 0.8210 0.6970 0.8653 0.6709 0.7558

MCI vs. SCD ✗ 0.7692 1.0000 0.7692 0.8695 0.6989 0.9541 0.6726 0.7890
✔ 0.9487 0.9707 0.9615 0.9661 0.7312 0.8656 0.7307 0.7924

4 Conclusion
To improve both the explainability and performance of the FC-based SCD/MCI
diagnostic model, we propose the GCAN, which directs the model’s attention
towards regions associated with neurodegeneration, termed the ’counterfactual
attention map’. This objective is achieved by constructing the generator and the
discriminator with AABT, enabling the generation of the target label FC and the
subtraction of the source label FC. AABT adapts an atlas-aware bidirectional
transformer and offers global insights into the target label FC reconstruction.
Experimental results confirm that the counterfactual attention map aligns with
empirical observations and domain knowledge of SCD and MCI, which demon-
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strates the explainability of the proposed GCAN. The diagnostic performance
and ablation study demonstrate the effectiveness of counterfactual attention.

Acknowledgement This work was founded by the National Natural Science
Foundation of China (Grants 32361143787), the China Postdoctoral Science
Foundation (Grants 2023M730873, GZB20230960). We have to appreciate the
hispital-collected dataset provided by Hospital of Guangxi University of Tradi-
tional Chinese Medicine.

Disclosure of Interests The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Ramírez-Toraño, F., Bruña, R., Bruña, R., Bruña, R., Frutos-Lucas, J.D., Frutos-
Lucas, J.D., Rodríguez-Rojo, I.C., Pedro, S.M., Pedro, S.M., Delgado-Losada,
M.L., Gómez-Ruiz, N., Barabash, A., Marcos, A., Higes, R., Maestú, F., Maestú,
F., Maestú, F.: Functional Connectivity Hypersynchronization in Relatives of
Alzheimer’s Disease Patients: An Early E/I Balance Dysfunction?. Cereb. Cortex
31(2), 1201–1210 (2020)

2. Liebe, T., Dordevic, M., Kaufmann, J., Avetisyan, A., Skalej, M., Müller, N.G.:
Investigation of The Functional Pathogenesis of Mild Cognitive Impairment by
Localisation-based Locus Coeruleus Resting-state fMRI. Hum. Brain. Mapp 43(18),
5630–5642 (2022)

3. Li, Y., Liu, J., Jiang, Y., Liu, Y., Lei, B.: Virtual Adversarial Training-Based Deep
Feature Aggregation Network From Dynamic Effective Connectivity for MCI Iden-
tification. IEEE Trans. Med. Imaging 41(1), 237–251 (2021)

4. Zuo, Q., Zhong, N., Pan, Y., Wu, H., Lei, B., Wang, S.: Brain Structure-Function
Fusing Representation Learning Using Adversarial Decomposed-VAE for Analyzing
MCI. IEEE Trans. Neural Syst. Rehabilitation Eng. 31, 4017–4028 (2023)

5. Selvaraju, R.R., Das, A., Vedantam, R., Cogswell, M., Parikh, D., Batra, D.: Grad-
CAM: Visual Explanations from Deep Networks via Gradient-Based Localization.
Int J Comput Vision 128(2), 336–359 (2016)

6. Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel, P., Hu,
X.: Score-CAM: Score-Weighted Visual Explanations for Convolutional Neural Net-
works. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 111–119. IEEE, Seattle, The United States of America,
(2019). https://doi.org/10.1109/CVPRW50498.2020.00020

7. Oh, K., Yoon, J., Suk, H.: Learn-Explain-Reinforce: Counterfactual Reasoning and
its Guidance to Reinforce an Alzheimer’s Disease Diagnosis Model. IEEE Trans.
Pattern. Anal. 45(4), 4843–4857 (2021)

8. Ren, Z., Sun, Y., Wang, M., Feng, Y., Li, X., Jin, C., Yang, J., Lian, C., Wang,
F.: Punctate White Matter Lesion Segmentation in Preterm Infants Powered by
Counterfactually Generative Learning. In: Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2023: 26th International Conference, pp. 220–
229. Springer, Vancouver, Canada (2023). https://doi.org/10.1007/978-3-031-43904-
9_22



10 X R. Shen et al.

9. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
ArXiv, abs/2010.11929, (2020)

10. Bannadabhavi, A., Lee, S., Deng, W., Li, X.: Community-Aware Trans-
former for Autism Prediction in fMRI Connectome. In: Medical Image Com-
puting and Computer Assisted Intervention–MICCAI 2023: 26th International
Conference, vol. 14227, pp. 287–297. Springer, Vancouver, Canada (2023).
https://doi.org/10.1007/978-3-031-43993-3_28

11. Tan, Y., Ting, C., Noman, F.M., Phan, R.C., Ombao, H.C.: A Unified Frame-
work for Static and Dynamic Functional Connectivity Augmentation for Multi-
Domain Brain Disorder Classification. In: 2023 IEEE International Conference on
Image Processing (ICIP), pp. 635–639. IEEE, Kuala Lumpur, Malaysia (2023).
https://doi.org/10.1109/ICIP49359.2023.10222266

12. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Del-
croix, N., Mazoyer, B., Joliot, M.: Automated Anatomical Labeling of Activations in
SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject
Brain. Neuroimage 15(1), 273–289 (2002)

13. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning. In: 31st AAAI
Conference on Artificial Intelligence, pp. 4278–4284. Association Advancement
Artificial Intelligence, San Francisco, The United States of America (2016).
https://doi.org/10.1609/aaai.v31i1.11231

14. Woo, S., Park, J., Lee, J., Kweon, I.: CBAM: Convolutional Block Attention Mod-
ule. In: 15th European Conference on Computer Vision (ECCV), pp. 3-19. Sringer,
Munich, Germany (2018). https://doi.org/10.1007/978-3-030-01234-2_1

15. Jin, D., Wang, P., Zalesky, A., Liu, B., Song, C., Wang, D., Xu, K., Yang, H.,
Zhang, Z., Yao, H., Zhou, B., Han, T., Zuo, N., Han, Y., Lu, J., Wang, Q., Yu,
C., Zhang, X., Zhang, X., Jiang, T., Zhou, Y., Liu, Y.: Grab-AD: Generalizabil-
ity and Reproducibility of Altered Brain Activity and Diagnostic Classification in
Alzheimer’s Disease. Hum. Brain. Mapp. 41(12), 3379–3391 (2020)

16. Eyre, H. A., Acevedo, B., Yang, H., Siddarth, P., Van Dyk, K., Ercoli, L., Leaver,
A. M., Cyr, N. S., Narr, K., Baune, B. T., Khalsa, D. S., Lavretsky, H.: Changes in
Neural Connectivity and Memory Following a Yoga Intervention for Older Adults:
A Pilot Study. J. Alzheimer’s Dis. 52(2), 673—684 (2016)

17. Xia, M., Wang, J., He, Y.: BrainNet Viewer: A Network Visualization Tool for
Human Brain Connectomics. PLoS One 87, e68910 (2013)

18. Mah, L., Murari, G., Vandermorris, S., Chen, J., Verhoeff, N.P., Herrmann, N.: Dis-
tinct Patterns of Posterior Default Mode Network-Medial Temporal Lobe Connec-
tivity in Mild Cognitive Impairment and Subjective Cognitive Decline. Alzheimers.
Dement. 17(S4), e055832 (2021)

19. Ghanbari, M., Li, G., Hsu, L., Yap, P.: Accumulation of Network Redundancy
Marks the Early Stage of Alzheimer’s Disease. Hum. Brain. Mapp. 44(8), 2993–
3006 (2023)


