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Abstract. Accurate dense depth prediction of monocular endoscopic
images is essential in expanding the surgical field and augmenting the
perception of depth for surgeons. However, it remains challenging since
endoscopic videos generally suffer from limited field of view, illumina-
tion variations, and weak texture. This work proposes LGIN, a new ar-
chitecture with unsupervised learning for accurate dense depth recovery
of monocular endoscopic images. Specifically, LGIN creates a hybrid en-
coder using dense convolution and pyramid vision transformer to extract
local textural features and global spatial-temporal features in parallel,
while building a decoder to effectively integrate the local and global fea-
tures and use two-heads to estimate dense depth and odometry simul-
taneously, respectively. Additionally, we extract structure-valid regions
to assist odometry prediction and unsupervised training to improve the
accuracy of depth prediction. We evaluated our model on both clinical
and synthetic unannotated colonoscopic video images, with the experi-
mental results demonstrating that our model can achieve more accurate
depth distribution and more sufficient textures. Both the qualitative and
quantitative assessment results of our method are better than current
monocular dense depth estimation models.

Keywords: Monocular depth estimation · Transformer · Endoscopy ·
Unsupervised learning · Colonoscopy.

1 Introduction

Endoscopy is an essential diagnostic and therapeutic tool in minimally invasive
surgery. However, monocular endoscopy with a limited field of view and a lack
of depth perception of the surgical scene increases operative time and surgical
risks. To this end, dense depth recovery for endoscopic field 3-D reconstruction
is widely discussed to expand the endoscopic viewing of the surgeon [7].
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Deep learning approaches are commonly used for dense depth estimation.
Supervised learning usually requires large annotated data which is particularly
unrealistic for monocular endoscopic videos. Therefore, recent researches [14, 5]
introduce self-supervised learning methods in endoscopy images by using sparse
depth supervision (e.g.SfM), which greatly depends on the quality of sparse re-
construction. Fortunately, unsupervised learning approaches employing the pho-
tometric loss for training to simultaneously estimate dense depth and camera
poses are more convenient [15, 20, 9, 26, 11].

Convolutional neural networks (CNNs) are widely used for dense depth es-
timation [12, 15, 28, 13]. Although CNNs extract abundant local spatial texture
features, they are inadequate to extract global features because convolution only
focuses on small patches. Recently, vision transformers (ViT) are increasingly
discussed in dense depth prediction task [18, 22, 1, 25]. However, texture details
obtained by these models were insufficient compared to CNNs because the trans-
former focuses too much on long-distance relationships while neglecting fine tex-
tures. Therefore, aggregating global features with local features is a promising
way for accurate dense depth estimation. Currently, many locally enhanced ViT
models have been proposed for depth prediction [8, 17, 16, 27, 3, 24]

This work explores the performance of CNN and the transformer for monoc-
ular dense depth prediction and proposes a new model LGIN with unsupervised
learning for depth and odometry prediction. The contributions of our work are
as follows. Firstly, we create a hybrid encoder combining dense convolution and
pyramid vision transformer to extract features in parallel which can obtain more
sufficient and accurate local texture features and global depth distribution fea-
tures. Secondly, we build a powerful decoder to effectively integrate local and
global features from coarse to fine and use dual heads to estimate dense depth
and odometry simultaneously. The feature-shared way can improve the relevance
of depth and pose prediction. Finally, we extract structure-valid regions through
automatic motion-driven photo-difference to assist odometry prediction and un-
supervised training to improve the accuracy of depth prediction.

2 Methods

This section details our proposed local textural and global spatial-temporal fea-
tures integration networks (LGIN) with unsupervised learning for monocular
endoscopic dense depth and odometry estimation, as shown in Fig 1.

2.1 Hybrid Encoder of LGIN

Given a set of images V = {V1, ·Vt · · · , VT } ∈ RH×W×3×T (where each frame
Vt is ∈ RH×W×3 and T represents the number of frames), the hybrid encoder
combines dense convolution and pyramid vision transformer to extract local and
global features from the image set V.

Dense Convolution. Integrating local textural features into global features
is a promising way to predict dense depth with accurate texture and structure.
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Fig. 1. The overall framework of the proposed LGIN.

To this end, we introduce DenseNet [10] as an encoder due to its excellent local
feature reuse and reservation mechanism.

For each frame Vt ∈ V, the dense encoder first performs a 3× 3 convolution
to obtain the initial feature map which has C channels, which is then sent to
3 dense blocks with a transition-down module [10] for multi-scale local features
extraction. The dense block comprises 4 convolutions with skip connections and
a transition-down module (convolution and pooling) for purpose of increasing the
receptive field of local features while reducing parameters. After the local feature
extraction, we further obtain 3 local feature maps L1

t ∈ RH/2×W/2×(C+4r), L2
t ∈

RH/4×W/4×(C+8r), and L3
t ∈ RH/8×W/8×(C+12r), where r represents the grow-

rate of the dense block. These local textural feature maps are then sent to fuse
with global spatial-temporal features.
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Fig. 2. A sample of local features, global features, and integrated features

Pyramid Vision Transformer. ViT [4] is generally adapted to capture
long-dependence relationships and extract global features. It is proven that pyra-
mid vision transformer is more effective than ViT in dense prediction [21]. Hence,
We employ PVT as another encoder to extract both global spatial features and
temporal information between consecutive frames [23] to perceive global depth
range and illumination variations for better training with unsupervised learning.

The PVT encoder is of 4 stages and each PVT module contains patch and po-
sition embeddings, transformer blocks, and reshaping, as depicted on the bottom
left of Fig 1. The first PVT module embeds the frame set V into tokens ∈ RN×C1 ,
where N = H ×W × T/P 2 represents the number of patches, P denotes the
initial patch size which is set to 8, and each token has C1 dimensions. After
that, it uses three transformer blocks with multi-head self-attention (MSA) and
multi-layer perceptron (MLP) for global spatial-temporal feature extraction[4].
Finally, the tokens of frame Vt is reshaped into image-like global feature map
G1

t ∈ RH/8×W/8×C1 . The following PVT modules are similar but embed the fea-
ture map from the previous stage with a patch size of 2 to reduce the resolution
of feature maps while increasing the dimension of tokens. In this way, we can
obtain the other 3 feature maps G2

t ∈ RH/16×W/16×C2 , G3
t ∈ RH/32×W/32×C3 ,

and G4
t ∈ RH/64×W/64×C4 .

2.2 Feature Integration Decoder of LGIN

As described in Fig 1, the decoder first uses 4 integration blocks to aggregate 3
local textural features and 4 global spatial-temporal features, and thus obtain
integration feature F 1

t from coarse to fine for each frame

F 4
t = Conv(U(Θ(Θ(Conv(U(G4

t )))))), (1)

F i
t = Conv(U(Θ(F i+1

t ⊕Θ(Conv(U(Gi
t)))))⊗ Li

t), i = 1, 2, 3 (2)

where U , Θ, ⊕, ⊗, and Conv represent upsample (bilinear interpolation), residual
block, addition, concatenation, and 3×3 convolution, respectively. All global fea-
ture maps are first upsampled, and the channel numbers are fixed to Ĉ through
Conv. Note that the other U is placed before concatenation and 3 × 3 convo-
lution so that local texture features can compensate upsampled global features
for coarse granularity. Moreover, we directly add integrated features from the
previous layer into the current layer, which enables the decoder to estimate the
depth information in a coarse-to-fine mode. A sample of the hybrid feature maps
is displayed in Fig. 2, the local features contain more texture information while
global features represent the overall depth range and distribution information.

Then the decoder uses dual-heads (depth and pose head) to simultaneously
estimate dense depth {D1, D2, · · · , DT } and odometry {T1,2, T2,3, · · · , TT−1,T }
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from integrated features {F 1
1 , F

1
2 , · · · , F 1

T }. The yellow blocks in Fig. 1 illus-
trate the pose head and depth head in detail. Note that we will calculate a
structure-valid mask to eliminate interference from relatively static or untex-
tured irrelevant regions with pose predictions

Msv
i,j(x, y) =

{
False |Vi(x, y)− Vj(x, y)| < τ

True |Vi(x, y)− Vj(x, y)| ≥ τ
, (3)

where x, y represents the pixel position in the frame and τ indicates the threshold
to distinguish whether each pixel position is static between two frames according
to [6]. The obtained mask Msv

i,j will be used to extract the structure-valid region
in the feature maps F 1

i and F 1
j for pose prediction.

2.3 Unsupervised Learning

This work employs unsupervised learning to train our LGIN. Photometric loss is
commonly used for unsupervised training which aims to measure the photomet-
ric inconsistency between two endoscopic images and their warped images [15].
However, the traditional photometric loss cannot effectively supervise the net-
work due to illumination variations on endoscopic images. Hence, we introduce
the minimum photometric supervision [6] to solve this problem. Additionally,
to eliminate the influence of relatively static regions and untextured regions on
the calculation of photometric error especially in endoscopic images of tubular
organs, we only use structure-valid regions of images for calculation. Specifically,
we use three consecutive frames to calculate the loss

Lp(Vt, Vi, Vj) = 1−
∑

(Msv
t,i ∪Msv

i,j)Max(Ω(Vt,i, Vi), Ω(Vj,i, Vi)), (4)

whereΩ(·) is the SSIM function to compute the similarity for accurate photomet-
ric supervision, Vt,i means the warped image from Vt to Vi. We also introduce
geometric consistency loss [2] to ensure the scale consistency and smooth the
depth structure

Lg(Di, Dj) =
∑ (Di,j −Dj)

2

D2
i,j +D2

j

+
∑ (Dj,i −Di)

2

D2
j,i +D2

i

, (5)

where Di,j means the warped depth map from two adjacent frames Di to Dj .

3 Experimental settings

We used two kinds of data in the experiment: Synthetic and clinical colonoscopic
video data. The public synthetic data [19] simulate weak texture and illumina-
tion variations of colonoscopic images with ground truth depth and odometry.
The size of the virtual image is 475×475 and there are 33 image sequences. Each
sequence contains 600 frames. The clinical data were recorded during colono-
scopies from 80 patients. We manually selected frames with a relatively large
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Fig. 3. Six feature extraction manners using the CNN (Cn) and the transformer (Tr).

camera motion for better unsupervised learning. Finally, 160 colonoscopic image
sequences were used and each sequence contains about 15 to 20 frames for model
training. All images were downsampled to a size of 320 × 256.

For LGIN, we set the first convolution channel C to 48, dense-block growing
rate r to 12, and the dimension C1, C2, C3, and C4 of tokens are 384, 768, 768,
and 768, respectively. The channel Ĉ of global feature maps is fixed to 256
in integration blocks. We used the stochastic gradient descent algorithm as an
optimizer with a momentum of 0.9 during training. We divided the dataset into
training and testing by a ratio of 7:3 and used cross-validation to obtain diverse
experimental results. The balance coefficients of two losses Lp and Lg were 0.8
and 0.2. For a fair comparison, we inputted three frames (T = 3) at a time to
train all models. The learning rate from 10−4 to 10−3 and the batch size, epoch,
and iterations were set to 2, 200, and 500, respectively.

We first compare our LGIN (6) to five convolution or transformer-based depth
prediction models: (1) EndoSLAM [15], (2) MonoFormer [1], (3) DPT-H [18], (4)
LiteMono [27], and (5) DSCT [3]. Note that models (2)-(5) use PoseNet of En-
doSLAM. We can categorize the six models according to different manners of
feature extraction as shown in Fig. 3. (1) is convolution-based feature extrac-
tion while (2) is transformer-based, (3)-(6) integrate the convolution and trans-
former for feature extraction. Specifically, (3) uses the transformer to extract
global features based on the local feature maps; (4) inserts convolution mod-
ules before multi-head self-attention for feature extraction; (5) uses CNN and
the transformer for feature extraction and performing feature interaction; and
our LGIN (6) uses CNN and the transformer for feature extraction respectively.
Then, an ablation study is conducted to verify the effectiveness of two-heads
and structure-valid regions extraction in LGIN: (7) LGIN w/o PH: only using
depth prediction head and introducing PoseNet of EndoSLAM; and (8) LGIN
w/o Msv: removing the structure-valid masking operation of the pose head.

Since there is no ground truth for clinical colonoscopic images, we employ two
metrics SSIM and PSNR for quantitative assessment. Specifically, we warp one
frame into another by model-estimated camera poses and dense depth maps and
calculate SSIM and PSNR between original images and warped images. For the
synthesis data, we scale the predicted depth map through a median ratio with
the ground truth and then use four classical metrics of absolute relative error
(AbsRel), square relative error (SqRel), root mean square error (RMSE), and
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Input EndoSLAM MonoFormer DPT-H LiteMono DSCT LGIN(Ours)

Input EndoSLAM MonoFormer DPT-H LiteMono DSCT LGIN GT

Fig. 4. Qualitative comparison of monocular dense depth estimated by the six models
introduced in Experimental settings with the same unsupervised learning method. Rows
1∼4 correspond to clinical data and Rows 5∼8 correspond to synthetic data.

proportion of distribution consistency δt to evaluate the depth accuracy and the
popular metrics absolute trajectory error (ATE) and relative pose error (TRPE

and RRPE) to evaluate the odometry prediction.

4 Results and Discussion

Fig. 4 displays estimated colonoscopic dense depth maps. We can see the fully
convolutional method EndoSLAM [15] limit itself with inaccurate depth distri-
bution and global structure. Transformer-based networks MonoFormer [1] can
predict more accurate depth distribution but with insufficient details. DPT-
H [18], Litemono [27], and DSCT [3] can also not extract better local texture
details and global depth coherence. Our LGIN can generally estimate global
depth distribution and depth details in local structures. Table. 1 demonstrates
the quantitative assessment results of different methods. EndoSLAM performs
not better than other methods. MonoFormer performs better than DPT-H, Lite-
Mono, and DSCT for clinical data but not for synthetic data. LGIN w/o Msv is
a little better than LGIN w/o PH and Our LGIN outperforms other methods.
Fig. 5 demonstrates the local and global feature maps extracted by the convolu-
tion and the transformer. All local feature maps extracted by four models show
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Table 1. Comparison of quantitative assessment results of using the eight methods.

Datasets Clinical data Synthetic colonoscopic data
Types Depth Depth Pose
Metrics SSIM↑ PSNR↑AbsRel↓ SqRel↓RMSE↓ δ1↑ δ2↑ δ3↑ ATE(cm)↓ T (mm)

RPE ↓R
(◦)
RPE↓

EndoSLAM [15] 0.572 19.439 0.281 4.474 12.90 0.561 0.854 0.938 14.268 1.281 2.352
MonoFormer [1] 0.590 19.797 0.250 3.861 12.54 0.624 0.876 0.957 8.755 0.692 1.868
DPT-H [18] 0.588 19.743 0.247 3.278 12.73 0.613 0.861 0.958 11.212 0.759 1.913
LiteMono [27] 0.582 19.776 0.256 3.568 13.18 0.621 0.869 0.955 12.439 0.816 2.236
DSCT [3] 0.583 19.654 0.245 3.212 12.56 0.625 0.875 0.956 12.981 0.701 1.871

LGIN w/o PH 0.591 19.875 0.207 2.869 11.38 0.706 0.893 0.968 10.251 0.682 1.922
LGIN w/o Msv 0.594 19.882 0.198 2.380 10.55 0.710 0.914 0.982 6.922 0.452 1.547

LGIN 0.605 20.012 0.188 2.279 10.03 0.709 0.926 0.987 6.375 0.385 1.424

Input DPT-H [18] LiteMono [27] DSCT [3] LGIN
Local Global Local Global Local Global Local Global

Fig. 5. The local and global feature maps extracted by the convolution and transformer
of DPT-H [18], Litemono [27], DSCT [3], and our LGIN. We selected and colored some
feature maps to show. More can be seen in the supplementary material.

sufficient local texture information. Our extracted global features can represent
the depth distribution information better than the other three models.

This work aims to integrate the advantages of CNN and the transformer to
propose an effective depth and odometry prediction model for monocular endo-
scopic images. The effectiveness of our methods is discussed as follows. First,
LGIN creates a hybrid encoder to extract abundant local textural features and
global spatial-temporal features in parallel and employs a powerful decoder to
integrate these local and global features. Such a way of feature extraction and
fusion is more effective than DPT-H [18], Litemono [27], and DSCT [3]. Sec-
ond, the feature-shared way of the dual-head mechanism improves the relevance
and accuracy of depth and pose prediction in unsupervised learning. Finally,
structure-valid region extraction improves the accuracy of odometry prediction
by eliminating interference from irrelevant areas. Additionally, we use transform-
ers to extract temporal features and introduce minimum photometric loss can
reduce the influences of illumination variations.

Our method inevitably suffers from some limitations. Firstly, although our
model can generally predict accurate dense depth for monocular endoscopic im-
ages, accurate odometry estimation is still a challenge for deep learning models.
Secondly, the computational efficiency of our model should be improved to meet
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real-time applications. Our future work will explore a lightweight network en-
coder for convolutional extraction and acceleration of multi-head self-attention.
In summary, this work proposes a new deep learning model LGIN with unsuper-
vised learning for accurate endoscopic dense depth prediction.
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