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Abstract. Fine-grained spatio-temporal learning is crucial for freehand
3D ultrasound reconstruction. Previous works mainly resorted to the
coarse-grained spatial features and the separated temporal dependency
learning and struggles for fine-grained spatio-temporal learning. Mining
spatio-temporal information in fine-grained scales is extremely challeng-
ing due to learning difficulties in long-range dependencies. In this context,
we propose a novel method to exploit the long-range dependency man-
agement capabilities of the state space model (SSM) to address the above
challenge. Our contribution is three-fold. First, we propose ReMamba,
which mines multi-scale spatio-temporal information by devising a multi-
directional SSM. Second, we propose an adaptive fusion strategy that
introduces multiple inertial measurement units as auxiliary temporal in-
formation to enhance spatio-temporal perception. Last, we design an on-
line alignment strategy that encodes the temporal information as pseudo
labels for multi-modal alignment to further improve reconstruction per-
formance. Extensive experimental validations on two large-scale datasets
show remarkable improvement from our method over competitors.

Keywords: State Space Model · Multi-modal Alignment · Freehand 3D
Ultrasound.

1 Introduction

Freehand 3D ultrasound (US) can provide comprehensive spatial information
about the scanned region of interest and has been widely used in clinical diag-
nosis [9,11]. With the development of deep learning technology, current freehand
3D ultrasound reconstruction is free from dependence on external positioning
devices, which were previously routinely utilized. They reconstruct the volume
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Fig. 1. Pipeline of freehand 3D US reconstruction with multiple IMUs.

by estimating the relative spatial transformations of a series of US images. How-
ever, the difficulty in mining spatio-temporal information in fine-grained scales
makes it very challenging to accurately infer the relative position.

Recent studies were mainly based on convolutional neural network (CNN)
and achieved advanced performance. Prevost et al. [12] introduced an end-to-
end method utilizing CNN to estimate the relative motion of US images. Guo
et al. [2] proposed a deep contextual-contrastive network (DC2-Net) and intro-
duced a contrastive learning strategy to enhance reconstruction performance.
Li et al. [4] proposed to estimate 3D spatial transformation between US frames
using recurrent neural networks (RNNs). Luo et al. [5,6] further improves re-
construction performance by online learning and shape priors. However, we note
that the general approach of these studies is to first extract the coarse-grained
features of the image and then extract the temporal information contained in
these features. This design undoubtedly ignores the fine-grained spatio-temporal
information, which is crucial for freehand 3D ultrasound reconstruction, and re-
sults in fragmentation between spatial and temporal information.

The lightweight sensor known as the inertial measurement unit (IMU) is an
ideal choice for freehand 3D ultrasound reconstruction due to its low cost, low
power consumption, and small size, as shown in Figure 1. Prevost et al. [11]
have shown that incorporating IMU angles can enhance the accuracy of relative
motion estimation. Luo et al. [7,8] have developed two multi-modal networks
that leverage the valuable information from acceleration and angle measurements
obtained from single or multiple IMUs to improve reconstruction performance.
These studies highlight the significant improvement that IMUs can bring to
freehand 3D ultrasound reconstruction.

In this study, we propose FiMA (Fine-grained Context and Multi-modal
Alignment), which exploits the efficient long-range dependency management
capabilities of the state space model (SSM) to mine the spatio-temporal in-
formation in fine-grained features. Our contribution primarily revolves around
three key aspects. First, we propose ReMamba, which mines multi-scale spatio-
temporal information via multi-directional SSM. Additionally, we propose an
adaptive fusion strategy that introduces multiple IMUs as additional temporal



Fine-grained Context and Multi-modal Alignment for Freehand 3D US 3

Fig. 2. Overview of the proposed FiMA.

information to enhance spatio-temporal information. Last, we design an online
alignment strategy that uses the temporal information of IMUs as pseudo-labels
for multi-modal alignment to further improve reconstruction performance.

2 Methods

An overview of our proposed FiMA is shown in Figure 2. It consists of three
components: ReMamba for image sequence encoding (Figure 2(A)), adaptive
fusion (Figure 2(B)) and online alignment (Figure 2(C)). Given an N -length
scanning sequence I = {Ii|i = 1, 2, · · · , N} and corresponding multiple IMU
data U = {Ui|i = 1, 2, · · · , N − 1}, we utilize FiMA to estimate the transfor-
mation parameters θ = {θi|i = 1, 2, · · · , N − 1}. In this context, θi refers to
the 3-axis translations ti = (tx, ty, tz)i and rotation angles ϕi = (ϕx, ϕy, ϕz)i
between image Ii and Ii+1. There are M independent IMU data Ui = {U j

i |j =

1, 2, · · · ,M}. Here, U j
i consists of 3-axis angles Φj

i = (Φx, Φy, Φz)
j
i and acceler-

ations Aj
i = (Ax, Ay, Az)

j
i . The pre-processing process for Φi and Ai follows the

method described in [7].

2.1 ReMamba with Multi-directional State Space Model

Fine-grained spatio-temporal information is crucial for accurate reconstruction.
Previous methods mainly capture temporal information just in coarse-grained
features, which is typically due to mining spatio-temporal information in fine-
grained features involves intractable long-range dependencie. Recently, Mamba [1],
with a SSM architecture and hardware-aware algorithms, demonstrated excellent
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Fig. 3. Detail design of ReMamba Block.

long sequence processing capabilities. Inspired by SSM, we propose ReMamba,
which mines multi-scale spatio-temporal information via multi-directional SSM.
ReMamba consists of stem, multiple residual blocks and ReMamba blocks with
multi-directional SSM. The architecture of ReMamba is shown in Figure 2(A).

Preliminaries. SSM maps a sequence x(t) to another sequence y(t) through
a implicit latent state h(t). It contains three learnable matrices A, B, C and
satisfies the following system of equation:

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)
(1)

The system is continuous, SSM is less effective on discrete data such as image.
Mamba is a discrete version of continuous system, it makes SSM parameters a
function of the input, which allows the model to selectively propagate or forget
information based on current token. This facilitates compression of the context
into a small state and better management of long-range dependency.

ReMamba Block. We flatten the three-dimensional image sequence fea-
tures into one-dimensional sequences in order to model spatial and temporal
information in a unified perspective, capturing temporal and spatial informa-
tion in multi-scale features. Different flatten rules produce different contexts. To
capture spatio-temporal information that is suitable for reconstruction, we de-
sign two different granularities of SSM within each ReMamba block, fine-grained
SSM-F and coarse-grained SSM-C. Each ReMamba block takes as input two
features of different scales and outputs two features of the same shape.

SSM-F is used to capture diverse spatio-temporal information in multi-scale
features. SSM-F receives output of previous residual block as input, and after
normalised distribution by LayerNorm, it goes through linear projections on the
main branch and on the gated branch into high-dimensional space to obtain x, z,
respectively. x then passes through the 1D convolution, SiLU and SSM layers in
both row-major direction (Figure 3(A)) and col-major direction (Figure 3(B)).
z goes through SiLU and products with the outputs of SSM in two directions
in the main branch, the products are summed up and finally linearly projected
back to the original dimensions. The projection results are summed with the
inputs to get fine-grained temporal information as output.
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Fig. 4. Details of Fusion Module. Its input are the image features from ReMamba, the
acceleration and Euler angles of multiple IMUs. It outputs multi-modal fused feature.

SSM-C is used to perceive overall motion patterns, the average pooling result
of the previous residual block output is then summed with the previous SSM-C
output, and the result as input to SSM-C, the input does not need to be flat-
tened. Similarly, we use both forward (Figure 3(C)) and backward (Figure 3(D))
direction and finally get the coarse-grained temporal information as output.

2.2 Adaptive Fusion Strategy

IMU can provide motion information beyond the image, recording the state of
motion over a period of time. To further enhance the spatio-temporal informa-
tion, we introduce multiple IMUs, and consider the measurement parameters
provided by IMUs as additional temporal information. However, motion of scan
sequences is complex and various. In addition, due to each IMU having different
characteristics and states and generating different noise, the temporal informa-
tion provided by multiple IMUs is not always consistent.

We introduce an adaptive fusion strategy (Fusion Module in Figure 2 to
address the above problem. Spatio-temporal information extracted from images
and temporal information extracted from IMUs are not independent, instead,
there should be a correlation between them. By combining the spatio-temporal
information extracted from images, we expect the network to be able to judge
whether each IMU provides reasonable temporal information at each moment.
Specifically, as shown in Figure 4, we map the acceleration/angle of each IMU to
the same two spaces as the image, representing the motion characteristics and
detailed temporal information of this IMU, respectively. We calculate affinity
between spatio-temporal information of images and representation for the motion
characteristics of the acceleration/angle of each IMU, the affinity is used as a
reference for weighting the detailed temporal information.

For the temporal information obtained from IMU acceleration/angle, we use
two multi-head attention to fuse spatio-temporal information of images and tem-
poral information of IMUs, respectively, and get the multi-modal fused features.
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Finally, we use a SSM-C module with skip connection and a linear projection to
decode the estimated transformation parameters θ̂. In training phase, we opti-
mise the network using mean absolute error and Pearson correlation loss:

Lsup = ∥θ̂ − θ∥1 +

(
1− Cov(θ̂, θ)

σ(θ̂)σ(θ)

)
(2)

where θ denotes the true transformation parameters, Cov denotes the covariance
calculation, and σ denotes the standard deviation.

2.3 Online Alignment Strategy

To capture appropriate temporal features on unseen data, we propose an online
alignment strategy (shown in Figure 2(C)), which takes the multiple IMU in-
formation as pseudo-labels and further enhance the reconstruction performance
through multi-modal feature alignment in test phase.

For the image feature FI from ReMamba, and the weighted temporal feature
of IMU acceleration FA from Fusion Module, we maximize the mutual informa-
tion between them to align their feature spaces, while facilitating their mutual
reduction of each other’s uncertainty. However, it is difficult to optimize the mu-
tual information directly, and we optimize one of its lower bounds refer to [10].
For an N-length sequence, the alignment loss Lalign is calculated according to
the image feature FIi and acceleration temporal feature FAi (0 < i < N):

Lalign = − 1

N − 1

N−1∑
i=1

log

(
exp(FIi · FAi/τ)∑N−1

j=1 exp(FIi · FAj/τ)

)
(3)

where τ is the temperature parameter, and we set it to 0.1.
IMUs provide accurate angle measurements in most cases, we use the fusion

weights corresponding to IMU angle in the fusion module as prior, and use
the prior weight to calculate average angle Φ̄ of these angle measurements, we
calculate the loss between the estimated Euler angle ϕ̂ and weighted IMU angle
using Pearson correlation loss:

Lprior = 1− Cov(ϕ̂, Φ̄)
σ(ϕ̂)σ(Φ̄)

(4)

We optimize FiMA using the sum of the above loss functions.

3 Experiments

Materials and Implementation. We construct two datasets refering to [8],
including arm and carotid, from 50 volunteers. The arm dataset contains 583
scans, employing a variety of scanning tactics such as linear, curved, loop, and
sector scans. Similarly, the carotid dataset includes 432 scans, utilizing linear,
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Table 1. The mean (std) results of different methods on the arm and carotid scans.
*indicates that the method does not require a sensor. ReM′ and ReM use Mamba
and ReMamba block, respectively. F′ and F represent the direct mapping of acceler-
ation/angle of multiple IMU to high dimension combined and the proposed adaptive
fusion strategy, respectively. The best results are shown in blue.

Method FDR(%)↓ ADR(%)↓ MD(mm)↓ SD(mm)↓ HD(mm)↓ MEA(deg)↓
Arm dataset

CNN-OF* 33.03(21.3) 46.80(36.5) 82.94(36.9) 2360.97(1503.3) 74.85(36.4) 4.82(3.0)
ResNet* 21.13(12.8) 31.29(18.0) 55.01(28.2) 1684.58(1795.8) 51.10(26.9) 7.36(4.2)

DC2-Net* 18.12(12.7) 26.63(15.0) 48.26(30.2) 1399.03(1670.2) 48.15(30.8) 7.02(4.0)
RecON* 15.37(9.7) 22.23(11.7) 34.41(20.1) 1096.15(963.0) 30.97(15.8) 5.23(3.5)
MoNet 14.38(8.7) 21.20(10.4) 32.36(18.7) 1009.60(863.5) 28.96(14.2) 3.70(2.3)
OSCNet 13.06(7.4) 19.90(11.2) 30.81(17.3) 947.06(716.6) 27.69(13.2) 3.45(2.2))
ReM′ 17.31(14.7) 26.36(16.6) 45.22(30.9) 1236.33(1135.5) 40.50(28.4) 6.50(3.3)
ReM 13.87(12.5) 20.86(14.6) 35.07(26.0) 969.46(911.6) 32.42(24.9) 5.67(2.9)

ReM+F′ 12.87(12.6) 18.98(13.3) 31.88(24.4) 875.87(880.0) 29.78(22.9) 5.17(2.8)
ReM+F 10.85(8.0) 16.86(10.4) 27.38(16.1) 746.32(567.2) 25.60(15.9) 4.58(2.6)
FiMA 9.72(7.1) 15.53(9.6) 24.68(13.6) 677.48(498.4) 23.05(13.6) 3.41(1.8)

Carotid dataset
CNN-OF* 28.25(18.3) 42.87(21.6) 45.12(17.5) 1392.58(1057.0) 39.68(16.6) 3.95(2.9)
ResNet* 21.47(13.5) 32.56(13.1) 37.53(16.9) 1157.17(740.4) 33.24(15.6) 5.34(3.2)

DC2-Net* 19.06(13.0) 30.64(17.1) 33.06(15.2) 1017.02(814.8) 27.99(12.8) 5.43(3.2)
RecON* 15.74(10.5) 26.80(19.0) 24.90(11.2) 800.50(716.9) 22.36(11.3) 4.25(2.8)
MoNet 14.53(9.5) 26.50(19.2) 23.67(10.7) 753.40(593.4) 21.11(11.0) 2.92(1.8)
OSCNet 14.17(9.5) 25.42(19.0) 23.25(10.5) 714.22(526.5) 20.62(10.5) 2.69(1.7)
ReM′ 13.13(10.3) 24.07(16.0) 20.79(10.7) 599.77(526.4) 18.21(10.1) 4.60(2.1)
ReM 11.27(7.9) 19.94(10.9) 17.58(8.8) 497.85(389.0) 15.96(8.4) 4.38(2.0)

ReM+F′ 10.13(6.6) 18.18(9.1) 16.41(8.4) 459.95(366.2) 14.55(7.6) 3.60(1.8)
ReM+F 9.07(5.9) 17.27(8.7) 15.12(7.5) 421.35(316.3) 13.33(6.9) 3.25(1.6)
FiMA 8.61(5.9) 16.16(8.1) 13.78(6.4) 391.77(298.4) 12.39(6.2) 2.09(1.2)

loop, and sector scan tactics. The average lengths of the arm and carotid scans
are 386.39 and 241.25 mm, respectively. The size of scanned images is 248× 260
pixels, with an image spacing of 0.15 × 0.15 mm2. The positions of IMUs are
the same as in Figure 1. The procurement and application of this data received
approval from the local Institutional Review Board (IRB), ensuring compliance
with ethical guidelines.

The arm and carotid datasets were split into training/validation/test sets in
a ratio of 375/104/104 and 276/78/78 scans, respectively, based on volunteer
allocation. We performed random augmentations on each scan referring to [8].
We used the Adam optimizer to optimize the model. During the training phase,
the epochs and batch size are set to 200 and 1, respectively. To avoid over-
fitting, we set the initial learning rate to 2×10−4 and used a learning rate decay
strategy that halves the learning rate every 30 epochs. During the testing phase,
the iteration epoch and learning rate are set to 60 and 2× 10−6, respectively.
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Fig. 5. Reconstruction examples produced by our proposed method. Red surface de-
notes the vessels reconstructed. Probe trajectory represents the scanning path.

Quantitative and Qualitative Analysis. We use following metrics refering
to [8] to quantify the performance of FiMA: final drift rate (FDR), average drift
rate (ADR), maximum drift (MD), sum of drift (SD), symmetric Hausdorff dis-
tance (HD), and mean error of angle (MEA). We compare FiMA with following
methods: CNN-OF [11], ResNet [3], DC2-Net [2], RecON [6], MoNet [7], OSC-
Net [8]. All comparison methods were conducted following original experimental
settings. The quantitative results are shown in Table 1.

As seen in Table 1, ReMamba outperforms single-IMU-based MoNet in sev-
eral metrics, even in the absence of an IMU. Moreover, it demonstrates the
effectiveness of our proposed multi-directional SSM, adaptive fusion strategy
and online alignment strategy. The optimal result achieved further improve-
ments over OSCNet, with 25.57% /21.96% and 39.24%/36.43% improvement in
FDR/ADR on the arm and carotid datasets, respectively. FiMA achieves the
state-of-the-art performance.

Figure 5 displays representative reconstruction outcomes from all the meth-
ods of comparison. It is evident that our FiMA demonstrates superior perfor-
mance and aligns with the ground truth more closely compared to other methods
on both the arm and carotid datasets. Segmentation results on typical recon-
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structed volumes show that FiMA can reconstruct blood vessels well, which is
expected to provide a reference for 3D analysis of anatomical structures.

4 Conclusion

In this study, we propose FiMA to exploits the efficient long-range dependency
management capabilities of SSM. FiMA realises the capture of spatio-temporal
information in multi-scale features, including these fine-grained features that
are crucial in reconstruction. We innovate an multi-modal fusion strategy to
adaptively extracted suitable information from multiple IMUs to guide recon-
struction. We propose an online alignment strategy to ensure stable and accurate
reconstruction performance of FiMA when inferring on unseen data. The exper-
imental results on the arm and carotid datasets show that above methods have
resulted in great performance gains and FiMA achieves state-of-the-art recon-
struction performance.
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