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Abstract. Pneumonia, recognized as a severe respiratory disease, has attracted 
widespread attention in the wake of the COVID-19 pandemic, underscoring the 
critical need for precise diagnosis and effective treatment. Despite significant 
advancements in the automatic segmentation of lung infection areas using medical 
imaging, most current approaches rely solely on a large quantity of high-quality 
images for training, which is not practical in clinical settings. Moreover, the unimodal 
attention mechanisms adopted in conventional vision-language models encounter 
challenges in effectively preserving and integrating information across modalities. To 
alleviate these problems, we introduce Text-Guided Common Attention Model 
(TGCAM), a novel method for text-guided medical image segmentation of 
pneumonia. Text-Guided means inputting both an image and its corresponding text 
into the model simultaneously to obtain segmentation results. Specifically, TGCAM 
encompasses the introduction of Common Attention, a multimodal interaction 
paradigm between vision and language, applied during the decoding phase. In 
addition, we present an Iterative Text Enhancement Module that facilitates the 
progressive refinement of text, thereby augmenting multi-modal interactions. 
Experiments respectively on public CT and X-ray datasets demonstrated our method 
outperforms the state-of-the-art methods qualitatively and quantitatively. 
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1 Introduction 

Pneumonia, a severe respiratory illness that affects the alveoli and distal airways, presents 
significant health risks [1]. The persistent threat of the coronavirus disease 2019 (COVID-
19) pandemic [2] has heightened concerns regarding the diagnosis and treatment of 
pneumonia. Traditionally, the diagnostic process for pneumonia has heavily relied on the 
manual interpretation of various radiological imaging modalities, demanding considerable 
time and expertise from radiologists. Thanks to the development of deep learning, numerous 
methodologies grounded in various types of neural networks, such as convolutional neural 
networks (CNNs) [3-6] and transformers, have been proposed and successfully applied in 



medical image segmentation tasks [7-10]. These approaches facilitate the precise 
delineation of the infected areas, significantly reducing the reliance on extensive manual 
effort and domain-specific specialized knowledge. 

In the field of medical image segmentation, existing methods predominantly rely on large 
amounts of labeled images for training, imposing high demands on the quality and quantity 
of available data. To mitigate similar issues available in natural image processing, CLIP [11] 
capitalizes on the complementary information provided by accompanying text, thereby 
reducing the dependency on high-quality annotated image data and maximizing the 
utilization of available information. Inspired by CLIP, approaches like MedCLIP [12] and 
GLoRIA [13] have extended these ideas to medical image-report pairs situations, still 
showcasing excellent performance. Motivated by the impressive performance gains 
achieved through the integration of textual information, Li et al. [14] proposed a novel 
CNN-Transformer structure named LViT to integrate multimodal information in the early 
stage. Lee et al. [15] propose a Text-Guided Cross-Position attention module, eschewing 
the commonly used transformer architecture. Zhong et al. [16] establish a more robust 
baseline using a U-Net variant architecture and strategically incorporate multimodal fusion 
processes into the decoding stage, leading to state-of-the-art performance enhancements. 

While the aforementioned studies have introduced text information, they apply the 
typical cross attention to obtain the Enhanced image feature by updating the value of the 
image with the query of text as shown in Fig. 1(a) [15,16]. This process represents image 
features using text-weighted attention. Conversely, Fig. 1(b) represents text features using 
image-weighted attention. These two forms of cross-attention, which we term unimodal 
attention mechanisms, only capture a portion of multimodal information, and information 
of the model acting as the query is not fully preserved. To alleviate this issue, we propose 
common attention, a novel attention mechanism to obtain genuine multimodal features. By 
integrating two unimodal attentions, our common attention mechanism facilitates deep and 
equitable interactions between visual and textual information, thereby enhancing the 
preservation and understanding of multimodal information. Moreover, unlike approaches 
that either introduce text features only once at the input stage [14,15,17] or utilize the same 
features obtained after initial encoding at each fusion stage [16], our method prevents 
discrepancies in feature levels between modalities, ensuring that image features correspond  

 
Fig. 1. Two kinds of unimodal attention mechanisms 
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Fig. 2. Overview of our proposed method and detail of the modules. Our model mainly 
consists of an image encoder, a text encoder and a multi-modal decoder. The decoder 
contains three Common Attention Blocks (CAB) to fuse and decode the multimodal 
features layer-by-layer, while each CAB contains a Common Attention Module (CAM) 
and Iterative Text Enhancement Module (ITEM). 
 

consistently to the same level of text features.  To achieve this goal, we propose an Iterative 
Text Enhancement Module, which iteratively converts text features to maximize their fusion 
capabilities. Our contributions can be summarized as follows. 1. We propose TGCAM, a 
text-guided segmentation method that incorporates text information for the automatic 
segmentation of infected regions, yielding excellent performance results. 2. We introduce a 
multimodal interaction mechanism named common attention and additionally design an 
Iterative Text Enhancement Module to facilitate deeper interaction between text and images. 
3. We conduct experiments on two public datasets, QaTa-Cov19 [18] and MosMedData 
[19], achieving a new state-of-the-art and demonstrating the effectiveness of the proposed 
method and individual modules. 

2 Method 

In this section, we innovatively propose a Text-Guided Common Attention Model 
(TGCAM). The overall architecture of our method is illustrated in Fig. 2. The model 
consists of three main components: text encoder, image encoder, and decoder. The image 
encoder encodes the input image to obtain image features, while the text encoder encodes 
the corresponding clinical text information to obtain text features. Subsequently, both the 
text and image features are passed into the Common Attention Block (CAB) for effective 
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fusion of the multimodality information. Specifically, they first pass the Common Attention 
Module, following the proposed common attention mechanism, which attends to preserve 
the intrinsic information of two modalities, to obtain fused multimodal features. Then, 
taking the fused multimodality features and the text feature of this layer as input, the 
Iterative Text Enhancement Module converts the text features to different levels iteratively, 
meanwhile promoting the deeper interaction of multimodal features. Repeated iterations of 
the CAB module better utilize image and text features at different levels, resulting in more 
effective fusion representations. Finally, the Segmentation Head is used to obtain the 
prediction. This architecture is designed with low coupling and portability, separating the 
encoding and fusion steps. 

2.1 Encoder Design 

Following [16], we adopt the ConvNeXt-Tiny [20] as the structure of the image encoder. It 
gradually extracts image features at different levels during the encoding phase: 𝐼𝐼1 ∈
ℝ
𝐻𝐻
4×𝑊𝑊4 ×𝐶𝐶1 , 𝐼𝐼2 ∈ ℝ

𝐻𝐻
8×𝑊𝑊8 ×𝐶𝐶2 , 𝐼𝐼3 ∈ ℝ

𝐻𝐻
16×𝑊𝑊

16×𝐶𝐶3 , 𝐼𝐼4 ∈ ℝ
𝐻𝐻
32×𝑊𝑊

32×𝐶𝐶4 . Note that, H and W represent the 
height and width of the input image, 𝐶𝐶𝑖𝑖 is the number of channels. For the Text Encoder, we 
employ CXR-BERT [21] to faithfully capture the text features. Taking the clinical text 
information  𝑇𝑇𝑖𝑖𝑖𝑖  as the text input, the text encoder outputs the text feature 𝑇𝑇 ∈  ℝ 𝑁𝑁×𝐶𝐶 
, where N denotes the length of the text feature and 𝐶𝐶 represents text channels.  

2.2 Common Attention Module 

Current widely adopted unimodal attention, respectively transformed the features of the 
image and text into Key and Query and then calculate the attention matrix to update the 
image one. In this manner, the textual feature could provide crucial information for the 
visual feature to learn the importance of the region described by text information but doesn’t 
participate as the output to the next layer, which leads to the loss of pure text information. 
To alleviate this issue, we design a Common Attention Module which drops the primary 
and secondary relationship in conventional attention mechanism, thus effectively enhancing 
the interaction between text and image. Specifically, as shown in Fig. 2(b), the proposed 
Common Attention Module takes text and image features as input, projecting them into 
Keys and Values without Query by different linear layers, treating inputs from both 
modalities equally, instead of considering one modality as a query condition for another 
modality, and calculates the attention matrix 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 ∈ ℝ 𝑁𝑁×𝐻𝐻𝐻𝐻 with the Key of each modality, 
taking both as the subject information to be retained, to obtain the common attention by 
Eq.1, which represents the equal relationship between them. where 1

√𝑐𝑐
 is the scaling factor. 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 = 1
√𝑐𝑐
𝐾𝐾𝑇𝑇(𝐾𝐾𝑉𝑉)𝑇𝑇 . (1)     

After softmax normalization in different directions, 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 is used to compute 𝐹𝐹𝑉𝑉 and 𝐹𝐹𝑇𝑇 
as follows: 



𝐹𝐹𝑉𝑉 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐)𝑉𝑉𝑣𝑣 , (2)                                     
𝐹𝐹𝑇𝑇 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑇𝑇�𝑉𝑉𝑇𝑇 . (3) 

The obtained features 𝐹𝐹𝑉𝑉 ∈ ℝ 𝑁𝑁×𝐶𝐶  and 𝐹𝐹𝑇𝑇 ∈ ℝ 𝐻𝐻𝐻𝐻×𝐶𝐶  represents the weighted image 
feature attended by each word in the sentence and the weighted textual feature attended by 
each pixel in the image, respectively. Finally, we fuse these two kinds of features into the 
genuine multimodal feature, that is, the common feature 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 ∈ ℝ 𝐻𝐻𝐻𝐻×𝑁𝑁 , which is 
computed as shown in Eq.4. 

𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐹𝐹𝑇𝑇(𝐹𝐹𝑉𝑉)𝑇𝑇 . (4) 
𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 is then reshaped to the size of 𝐻𝐻𝐻𝐻 × 𝐶𝐶 by linear projection function and passed to 

the next Module. 

2.3 Iterative Text Enhanced Module 

Generally, text features are incorporated only once during the decoding stage, while image 
features are introduced with the skip connection repeatedly. Nevertheless, this may result 
in the modality imbalance from the genuine true multimodal perspective. Therefore, we 
also intend to introduce the textual information in multiple layers with reference to [16]. 
However, it directly introduces the same text features obtained after initial text encoding at 
each fusion stage. Actually, due to the introduction of different levels of image features from 
the skip connection, the text features of interest should be different for different layers. That 
is to say, high-level visual features should merge with high-level textual features, and the 
same applies to low-level visual and textual features. Thus, we propose the Iterative Text 
Enhancement Module, which iteratively converts text features, realizing better deep inter-
modal interaction. As shown in the Fig. 2(c), the Iterative Text Enhancement Module is 
behind the Common Attention Module. It takes the text feature T and the fused feature 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 
of each layer as input. For the first layer, the text features derive from the initial encoding. 
The text features T and fused feature  𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐, after linear projection, are used to obtain the 
intermediate attention matrix 𝐴𝐴𝐿𝐿 as follows, where i represents the number of layers and LP 
[.] represents the linear projection function. 

𝑇𝑇𝑖𝑖+1 = 𝐿𝐿𝐿𝐿[𝑇𝑇𝑖𝑖], (5) 
𝐴𝐴𝐿𝐿𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐿𝐿𝐿𝐿[𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 ](𝑇𝑇𝑖𝑖+1)𝑇𝑇). (6) 

The intermediate feature is obtained through the attention matrix, and another linear 
projection function is performed. The result is summed with 𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 to get 𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+1 , while BN 
represents batch normalization. Finally, the new common features 𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+1  and text features 
𝑇𝑇𝑖𝑖+1 are fed into the next layer as input image features and text features: 

𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖+1 = 𝐵𝐵𝐵𝐵�𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 + 𝐿𝐿𝐿𝐿�𝐴𝐴𝐿𝐿𝑖𝑖 𝑇𝑇𝑖𝑖+1�� (7)                        

2.4 Decoder Module 

The Decoder Module includes three Common Attention Blocks. In the first block, initial 
image and text features are input. After the Common Attention Block, a skip connection is 



performed, followed by the up-sampling. The processed common feature replaces the pure 
visual features in the first block and is sent to the next block with iteratively converted text 
features. After all fusion blocks, the final multimodal information is fed into the 
Segmentation Head to obtain the predicted results. 

3 Experiments 

3.1 Datasets 

We used two datasets, QaTa-COV19 [18] and MosMedData [19], to evaluate the 
performance of our proposed method. Both datasets are medical image datasets derived 
from COVID-19, containing image sets of X-ray and CT modalities, respectively. QaTa-
COV19 consists of 9258 chest X-ray images from COVID-19 patients, collected by 
researchers from Qatar University and Tampere University. Specifically, 7145 are in the 
train sets, and 2113 are in the test sets. The dataset also includes annotated lung infection 
regions as ground truths for segmentation tasks. MosMedData is a large lung CT scan 
dataset for COVID-19, compiled from seven public datasets. There are a total of 2729 pairs 
of images and matching ground truth masks. To ensure consistency between different 
datasets, the annotations for different types of lesions are all colored white. 

It's worth noting that both datasets originally only contained image data. Li et al. [14], 
with the assistance of experts, manually annotated text information for both datasets. For 
example, shown in Fig. 2, "Bilateral pulmonary infection, two infected areas, upper left 
lung and upper right lung" focuses on whether there are infections on both sides, the total 
number of infection areas, and the approximate infected location. We followed the same 
division used by them. For QaTa-COV19, the train sets are split into 80% for training (5716 
images) and 20% for validation (1429 images). For MosMedData, the split was about 8:1:1, 
resulting in 2183 training images, 273 validation images, and 273 test images. 

3.2 Implementation Details  

All methods were implemented by PyTorch. Additionally, to facilitate the implementation 
of baseline methods, we used PyTorch-Lightning to encapsulate the training and inference 
process. The MONAI library [22] was employed for implementing the up-sampling and the 
segmentation head in the Decoder Module. In addition, we used the pre-trained model 
ConvNeXt-tiny and CXR-BERT from Hugging Face as the Image and Text encoders, 
providing a high-performance backbone. The loss function L is calculated by the sum of 
dice loss (𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) and cross-entropy loss (𝐿𝐿𝐶𝐶𝐶𝐶): 𝐿𝐿 = 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 +  𝐿𝐿𝐶𝐶𝐶𝐶 . The batch size, initial 
learning rate, and minimum learning rate were set to 32, 1e-5, and 1e-6, respectively. We 
chose the AdamW optimizer for network optimization and employed the cosine annealing 
learning rate policy for learning rate updates. All experiments were run on one Nvidia 
GeForce RTX 3090 with 24GB VRAM. Evaluation metrics for the model's segmentation 



results include the Dice coefficient and the Mean Intersection over Union (MIoU) metric.  

3.3 Comparison Experiments 

Table 1 presents the comparison results of other state-of-the-art medical segmentation 
models on QaTa-COV19 and MosMedData+. We list common mono-modal segmentation 
methods UNet [3], UNet++ [4], nnUNet [5] (results aligned with LViT[14]) meanwhile 
almost all multi-modal methods for medical segmentation are chosen. By contrast, all 
methods without text show an apparent performance gap with text-guided multimodal 
methods, where nnUNet achieves the best performance of the mono-modal method, still 
2.98% behind C2FVL [17] of Dice score, which demonstrates the ability of textual 

Table 1. Performance comparison of other state-of-the-art medical segmentation models on 
MosMedData+ and QaTa-COV19 test set 

Method 
MosMedData+ QaTa-COV19 
Dice MIoU Dice MIoU 

W/O Text 
U-Net [3] 0.6460 0.5073 0.7902 0.6946 
U-Net++ [4] 0.7175 0.5839 0.7962 0.7025 
nnUNet [5]  0.7259 0.6036 0.8042 0.7081 

Text-Guided 

C2FVL [17] 0.7456 0.6115 0.8340 0.7462 
CPAMTG [15] - - 0.8425 0.7598 
LViT [14] 0.7457 0.6133 0.8366 0.7511 
LGMS [16] - - 0.8977 0.8145 
TGCAM 0.7782 0.6369 0.9060 0.8281 

 

Fig. 3. Qualitative results of segmentation models on MosMedData+. Green, red and blue 
indicate true positive, false negative, and false positive pixels, respectively. 



information to guide segmentation. As for multi-modal methods, compared with C2FVL, 
our method improves Dice score by 7.2%, MIoU score by 8.19% on QaTa-COV19, which 
also surpasses CPAMTG [15] and LViT by a wide margin. LGMS [16] can reach quite good 
performance because of a similar baseline and the proposed method increases the dice score 
by just 0.83%, but we can achieve a 1.36% improvement in the MIoU score. On the 
MosMedData+, good performance is obtained, nearly 2.93% and 1.93% higher than LViT 
respectively for the Dice score and MIoU score.  

The results of the qualitative experiment and ground truths are shown in Fig. 3. Green, 
red and blue, indicate true positive, false negative, and false positive pixels, respectively. 
The mono-modal methods segment many false negative pixels because of apparent 
performance gaps. Compared to other multi-modal methods, we reduce overmuch segment 
showed in blue apparently, while our proposed method maintains the same or even better 
ability to recognize true positive pixels. 

3.4 Ablation Study 

To validate the effectiveness of our proposed module. Ablation studies are conducted on the 
QaTa-COV19 data set shown in Table 2. The number represents different settings of the 
network. In Model #0, the baseline represents the image-only used method, whose results 
are treated as the basic reference. The Model#1 and Model#2 introduce the ITEM and CAM 
of our proposed method individually. They respectively bring a performance gain of 4.9% 
and 6.04%, which verifies the effectiveness of both modules. Finally, Model#3 which 
contains both modules achieves the Dice score of 90.6% and MIoU score of 82.81% as the 
best results.  

4 Conclusion 

We developed a text-guided segmentation method Text-Guided Common Attention Model 
(TGCAM), including multimodal information from text for automatic segmentation of 
infected regions of the lungs. We rethink the feature fusion pipeline depending on 

Table 2．Ablation studies on the QaTa-COV19 test set. ‘w/o text’ means without text 
and the model use UNet Decoders only. ITEM, CAM represents Iterative Text 
Enhancement Module and Common Attention Module respectively  

No. Model QaTa-COV19 
Dice MIoU 

#0 Baseline (w/o text) 0.8418 0.7262 
#1 Baseline + ITEM 0.8908 0.8062 
#2 Baseline + CAM 0.9022 0.8219 
#3 Ours (Baseline + ITEM + CAM) 0.9060 0.8281 

 
 
 



attentional mechanisms and propose a genuine multimodal fusion attention mechanism 
named common attention. The designed Common Attention Block fuses text and image 
features at the decoding stage, where the Common Attention Module is responsible for the 
initial fusion and the Iterative Text Enhancement Module utilizes progressive conversions 
of text information for deeper multimodal interactions. The experimental results on both 
the X-ray and CT datasets indicate the advantages of our architecture compared to those 
image-only methods and multi-modal attention methods.  
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