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Abstract. We present a novel method for quantifying the microscopic
structure of brain tissue. It is based on the automated recognition of
interpretable features obtained by analyzing the shapes of cells. This
contrasts with prevailing methods of brain anatomical analysis in two
ways. First, contemporary methods use gray-scale values derived from
smoothed version of the anatomical images, which dissipated valuable
information from the texture of the images. Second, contemporary anal-
ysis uses the output of black-box Convolutional Neural Networks, while
our system makes decisions based on interpretable features obtained by
analyzing the shapes of individual cells. An important benefit of this
open-box approach is that the anatomist can understand and correct
the decisions made by the computer. Our proposed system can accu-
rately localize and identify existing brain structures. This can be used
to align and coregistar brains and will facilitate connectomic studies for
reverse engineering of brain circuitry.
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1 Introduction

One of the first steps in brain analysis is to answer the “where” question. To
answer this question the anatomist typically relies on brain cytoarchitecture,
namely, the spatial organization of neural elements. However, manual labeling
of the brain structures is a labor-intensive task. Typically, identifying and mark-
ing the boundaries of 40 standard landmarks in a single brain takes a trained
anatomist many weeks of work.

Based on [6], our new work introduces a machine learning-based approach to
automate the identification of structures within high-resolution mouse brain im-
ages (Figure 1). The method in [6] introduced the use of high resolution texture of
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brain tissue to identify different brain regions. The process of identification relied
on a pre-trained convolutional neural network (CNN) that processes pixel-level
features. This “black box” approach leads to inherently uninterpretable results.
Our new system utilizes interpretable cell shape features for structure detection.
Our underlying assumption is that the distribution of the cell shapes inside and
outside the structures should be significantly different, which is analogous to
the criteria used by anatomists for structure identification [4]. By focusing on
individual cells as the primary unit of analysis, our method not only makes self-
explainable decisions for the anatomists but also maintains robustness across
different staining procedures and imaging techniques. We demonstrate that the
features we compute for cell shapes can be used as inputs to structure detectors
of different brain regions.

Of interest, a recently published and independent study [9] also uses cell
shapes to build an interpretable machine learning method for cortical cytoar-
chitecture analysis. This study solved a classification challenge of detection of
human cortex laminae using a neuron-centric approach. Here we apply a neuron-
centric approach to detect the more general case of non-laminated geometrically
diverse spatial distributions of neurons. Such distributions are particularly preva-
lent in the mouse brainstem, a region that is typically very challenging to map.
Our method relies on two innovative approaches. Firstly, on top of manually
designed features, as used in the prior approach [9], our analysis utilizes unsu-
pervised learning to extract nuanced and interpretable features that more accu-
rately represent the diversity of cell shapes. By not relying solely on predefined
features, our system can uncover patterns that might otherwise be overlooked.
Secondly, we incorporate regional features that summarize the statistical at-
tributes of cell populations, rather than individual cells alone. These features
capture the collective properties of cell groups, such as density and orientation
distributions, to provide a robust framework for our detector. This approach
enables the system to recognize and classify structures even when individual
cell shapes are ambiguous or when cells exhibit subtle differences that are only
discernible as a population. The integration of these advanced regional features
significantly enhances the detector’s robustness, making it resilient to variations
in staining methods and imaging modalities.

2 Methods

Quantifying cell shapes Since our method is based on identifying the shapes
of the cells inside and outside the interested structure, the first part of our
method is to generate cell features to quantify the shapes of all cells in a single
brain. Our method starts with cell segmentations from all brain images using
OpenCV [3], a library of computer vision tools that includes adaptive thresh-
olding and connected components to isolate cell images from the noisy images.
Then all cell images are zero-padded to create pre-defined uniformly sized cell
patches for efficient handling of the subsequent processing steps.
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Fig. 1. The pipelines of our proposed system, where the figures indicate the outputs of
the stages and Roman letters enumerate the procedures. I: OpenCV for cell segmenta-
tions. II: K-means, Diffusion Mapping, and feature space alignment for extracting cell
features. III: Cumulative CDFs for generating regional features. IV: XGBoost for the
classification of the region.

To efficiently represent each cell patch, we employ a dimensionality reduc-
tion technique via Diffusion Mapping (DM) [2, 7]. This creates a continuous
non-linear mapping from single-cell patches into m-dimensional feature vectors
that represent the m most significant eigenvectors of the Laplace-Beltrami oper-
ator. In our case, we choose m = 10 for all brains, which significantly reduces the
dimensionality from the vast number of original pixel values to a more manage-
able feature space that best quantifies the cell shapes. However, as we typically
extract tens of millions of cells from each brain, the dataset used to train DM
is too large to fit in the computer memory. We thus used a streaming imple-
mentation of the K-means algorithm [1] as an efficient way to create a small
number of representative cell patches as the training set for the DM algorithm
(supplementary materials).

Conceptually, DM transforms cell patches into a 10-dimensional feature space,
which allows the visualization of these patches by treating their features as co-
ordinates within this space. By projecting cell patches in the same brain onto a
2D plane from this space, we create a “patch cloud” that represents cell shape
diversity along the chosen two dimensions. The visualization of the patch clouds
shows that the cell features learned through DM capture the cell shapes in a
visually explainable way.

Furthermore, after visually analyzing the patch clouds generated from dif-
ferent brains, we found that these patch clouds share similar shapes, despite
the fact that the brain images are obtained using different stains (thionin vs.
NeuroTrace blue) and imaging techniques (brightfield vs. fluorescent). In partic-
ular, the clouds from the different brains only differ by the orders of the axes or
the orientations of the shapes when they are visualized in the 2D planes. This
motivates the idea that the cell features from any brain can be aligned to a
fixed set of features using a simple affine transformation. By adopting the cell
features from the selected brain images as the reference, we formulated a root
mean squared (RMS) optimization procedure (supplementary materials) that
has a closed-form solution to formulate the affine transformation matrix.
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Fig. 2. (a) Visualization of patch clouds from two brains with different modalities on
the 1st and 4th fixed features. We chose to use the 1st and 4th features for display
purposes, rather than the 1st and 2nd features, to provide a geometrical interpretation.
Each “dot” in the image is a cell patch. The red patches are from a brain that is stained
with thionin and imaged using brightfield, and the blue patches are from a brain that
is stained with NeuroTrace blue and imaged using fluorescence. (b) The region of very
small cells. (c) The region of large and round cells. (d) The region of thin cells.

For example, Figure 2 shows the two patch clouds projected onto the subspace
formed by the 1st and 4th eigenvectors. Each cloud consists of the cell patches
obtained using the K-means algorithm that are representatives of the cells in two
different brains that are stained using thionin and NeuroTrace blue, respectively.
The patch clouds are visualized by projection onto the subspace formed by the
1st and 4th eigenvectors. The clouds overlap almost perfectly (Figure 2a), which
confirms the effectiveness of the affine transformation for aligning cell features
from different brains. Further, the cell patches with similar shapes are grouped
together in different regions (Figure 2b–d), which implies that the 4th eigenvector
on the x-axis describes the aspect ratio of the cell shape and the 1st eigenvector
on the y-axis gives the sizes of the cells.

In addition to the 10 cell features identified through the DM technique, we
incorporate an additional 10 manually designed features (supplementary materi-
als) that explicitly describe the shape of the cells. These supplementary features
are directly extracted from the images, without undergoing a learning process.
Finally, our feature vector for each cell encompasses a total of 20 attributes. To
facilitate the extraction of cell features for groups of cells in subsequent steps of
our method, we will establish a database that stores the feature vectors for all
cells within the brain. It is important to highlight that this feature extraction
process is based on unsupervised learning algorithms. This can be performed
even without manual annotations of the structures by experts in anatomy.

Structure detection One challenge of using the neuron-centric approach for
the task of structure detection lies in the fact that the single-cell shape does



Towards Explainable Automated Neuroanatomy 5

Fig. 3. Cell shape distributions for two regions near the Abducens Nucleus (6N). The
left image highlights a region that roughly corresponds to the 6N structure (circled in
green), while the right image shows a region outside the structure (circled in red). The
CDF graph represents the rotation feature of cells, with the green curve depicting the
CDF for cells within region 1 and the red curve for those within region 2.

not possess the distinctive properties to be classified as either inside or outside
a target structure. Since cytoarchitecture is a property of collections of cells, a
well-trained anatomist usually determines the boundary of the structure based
on the distribution of a group of cells in a small region. This insight motivates us
to develop our structure detection system to classify image regions rather than
individual cells, which are characterized using regional features that represent
the cell shape distribution in a specific region. Also, analyzing regions instead of
individual cells can greatly reduce the sensitivity of the analysis to segmentation
errors, such as when cell patches contain more than one neuron. By leveraging
the 20 cell features designed for characterizing individual cell shapes, we can
describe a region that contains a collection of cells through the distributions of
these features, which are represented by their empirical cumulative distribution
functions (CDFs). Therefore, the two regions have different characteristic cell
shapes if their CDFs are different (Figure 3).

To compute the region feature for a region containing a group of cells, we
first query our database to retrieve ’cell feature’ vectors for all cells within the
region. This is followed by generating cumulative CDFs for these cell features.
We utilize 20 cell features, and the CDF curve for each cell feature is discretized
into 99 points by sampling at fixed thresholds. All told, this results in a com-
prehensive region feature vector of 20× 99 = 1980 dimensions. Then we append
two additional features: cell density per unit area and the area ratio covered by
cells, which results in a final region feature vector with 1982 elements. Lastly,
our structure detection model takes the vector of the regional features and pre-
dicts the likelihood of the region belonging to a specific structure. Our model
employs XGBoost [5], which is a supervised learning algorithm that is particu-
larly suitable for our case. XGBoost not only inherits Adaboost’s resistance to
overfitting but also is interpretable in the sense that feature importance can be
readily derived from the trained model which is critical for anatomists to un-
derstand the decision of the model. Given that all our brains have 26 annotated
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structures, where paired ipsilateral-contralateral structures count once, we opted
for 26 binary classifiers rather than a single multi-class classifier, as this allows
for more precise and focused detection of each specific structure.

3 Results

Classifier accuracy We evaluate our method by comparing the predictive per-
formance of our structure detector with the CNN texture classifier introduced in
[6], both quantitively and qualitatively. The quantitive evaluation of our method
was conducted using the same three human-annotated brain image stacks cap-
tured from sagittal views, stained with thionin, and scanned at a resolution of
0.5µm using brightfield imaging [6]. Each structure was annotated by a group
of polygons. For the CNN texture classifiers, we utilized the pre-existing models
from [6] without further training. Unlike the CNN approach, whose input image
dimension is limited to 224× 224 pixels, our method can process regions of any
shape. However, to ensure a fair comparison, we adopted the same preprocessing
procedures as [6] to prepare the training set for our method and the test set for
both methods. In particular, all images from the three brains were split into
small image tiles of size 224 × 224 pixels using the sliding window technique,
which will be used as the input regions for our method. Given that we are train-
ing 26 binary classifiers corresponding to each of the 26 structures, a training
image tile is labeled as positive for a specific classifier if more than half of the tile
is within the anatomists’ defined structure boundary and is labeled as negative
for that classifier otherwise. The image tiles from two of the three brain images
were used as the training set, while the third one was used as the test set for
performance evaluation.

The performance of both methods was assessed using the Area Under the
Receiver Operating Characteristic Curve (ROC AUC) metric. The ROC curves
for six chosen brain structures using our method are shown in Figure 4a, while
Figure 4b displays the scores of both methods across all 26 structures. The ROC
AUC scores for our method consistently demonstrate high predictive perfor-
mance, with the lowest scores surpassing 0.75 and the highest nearing 1.0. The
average ROC AUC score for our method is 0.89. This is only slightly lower than
the CNN’s average of 0.92, yet still represents a robust performance. Thus our
method reliably differentiates between the various structures.

Probability map The unique advantage of our method is that our model can be
directly applied to images that have different textures from the training images
without retraining. In the following experiment, we used the same classifiers used
in the first experiment, which were trained on thionin-stained brain images, to
produce probability maps for brain images derived from a brain stained with
NeuroTrace blue. This staining method yields brain images with pixel intensities
markedly different from those stained with thionin. We followed the same step
used in [6] to generate the probability maps for both methods, wherein the
output of the classifier determines the probability of each image tile. Because
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Fig. 4. Comparison of ROC AUC scores for detecting different brain structures. Please
see [6] for the list of all 26 structures and their abbreviations.

Fig. 5. Comparison of structure identification across different sections using probability
maps. The coordinate Z = 0 represents the section where the centroid of the brain
structure is located. (a) Original image patches of the LC with cells delineated in
black. (b) Probability maps for each of the sections of our method. (c) Probability
maps of the CNN method. Bright and dark colors represent high and low probabilities
of being inside the structure, respectively.

of the dearth of annotations of structures for this brain, we will evaluate the
probability maps from both methods qualitatively through visual inspection. In
Figure 5a, we show 7 different image sections of the left locus coeruleus (LC),
where we can clearly see the structure in each image section defined by the
black and grey cells. Our method yields high-probability regions that are closely
aligned with the actual distribution of cells, as shown in the original image
patches (Figure 5b). This alignment is visually more precise in the probability
maps of our method than in the CNN probability maps (Figure 5c). Note the
regions of high probability derived using the CNN method do not accurately
overlay the cell-marked areas. This observation underscores the robustness of
our method in generating structure-specific probability maps across different
staining modalities, ensuring its utility without the necessity of retraining the
model for each new staining technique.
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Understanding the detector Utilizing XGBoost as our classification algo-
rithm offers the distinct advantage of providing feature importance metrics for
each input variable. This is particularly useful given that our cell and regional
features are intrinsically interpretable, which allows us to give anatomists a vi-
sual explanation for the model’s decisions. Specifically, we can trace back to
the original images and highlight cells that satisfy a feature deemed critical by
XGBoost in identifying a particular brain structure.

We now consider explanations of our automated method. In Figure 6a the
green outline labels the superior colliculus (SC) as identified by anatomists. In
contrast, the areas our detector identifies as SC are shaded in red, which is sub-
optimal as there is a large area of the unrecognized region (blue color) inside the
structure. Intriguingly, this behavior is understandable as the discernible bound-
ary marked by the black line made by our detector aligns with known biological
layers within SC: the superficial (SG) and deep (DG) grey [8] (Figure 6b). We
can understand why our method makes such decisions by highlighting the cells
that satisfy the features deemed important by the XGBoost model. In this case,
the XGBoost model put the highest importance on the feature “rotation–11.3”,
which represents the cumulative probability that a cell’s rotation angle is less
than 11.3◦. By highlighting the cells whose rotation angles are in the range
between −65◦ and 11.3◦ in dark red, we find that the highlighted cells predomi-
nantly populate the red regions, while being scarcely present in the blue regions
(Figure 6c). Thus, a biological rationale for our detector’s partitioning is primar-
ily based on the density of the cells oriented from the lower left to the upper right.
The disparities in the empirical CDFs for the rotation angle of cells illustrate a
clear statistical distinction between the cell orientations in the regions identified
with high (> 1) and low (< −1) XGBoost scores (Figure 6e). It is worth noting
that we deliberately omit the cells with angles less than −65◦ for visual clarity,
since they contribute very little to the XGboost decision process because of the
similar densities of such cells in both highlighted regions; see CDFs in Figure 6d.

4 Conclusion

Our method introduces significant contributions to computational neuroanatomy:
(1) an unsupervised learning procedure for efficiently extracting quantifiable cell
shape features, (2) region features that encapsulate the statistical properties of
cell populations, and (3) the deployment of supervised learning, specifically XG-
Boost, for robust structure detection. By focusing on cell shapes and statistical
properties, our approach achieves high accuracy and interpretability, aligning
closely with the criteria used by anatomists. Future directions include refining
segmentation techniques, exploring advanced unsupervised learning models for
feature extraction, extending the method’s applicability to other species or brain
regions, and integrating with neuroanatomical databases to uncover new brain
structures.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.



Towards Explainable Automated Neuroanatomy 9

Fig. 6. Explanation of the SC structure detection. (a) The result of our detector (green
contour), where there is a clear boundary between the recognized regions (red) and
unrecognized regions (blue). (b) The SG and DG gray layers within the SC, which
roughly correspond to the red and blue regions predicted by our detector. (c) and (d)
A closer view of the cellular orientation that our detector uses for its classification
shows a concentration of cells oriented from the lower left to the upper right in the red
region, in contrast to the sparsity of such cells in the blue region. (e) The CDFs of the
cell rotation angles for cells in high-score and low-score regions, where the cells with
angles between −65◦ and 11.3◦ are highlighted in (c) for a visual explanation.
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