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Abstract. Deep learning-based medical image recognition requires a
large number of expert-annotated data. As medical image data is often
scarce and class imbalanced, many researchers have tried to synthesize
medical images as training samples. However, the quality of the gener-
ated data determines the effectiveness of the method, which in turn is
related to the amount of data available for training. To produce high-
quality data augmentation in few-shot settings, we try to adapt large-
scale pre-trained generative models to medical images. Specifically, we
adapt MAGE (a masked image modeling-based generative model) as
the pre-trained generative model, and then an Adapter is implemented
within each layer to learn class-wise medical knowledge. In addition, to
reduce the complexity caused by high-dimensional latent space, we intro-
duce a vector quantization loss as a constraint during fine-tuning. The
experiments are conducted on three different medical image datasets.
The results show that our methods produce more realistic augmentation
samples than existing generative models, with whom the classification
accuracy increased by 5.16%, 2.74% and 3.62% on the three datasets re-
spectively. The results demonstrate that adapting pre-trained generative
models for medical image synthesis is a promising way in limited data
situations.

Keywords: Medical Image Synthesis · Large Pre-trained Generative
Model · Data Augmentation · Medical Image Classification.

1 Introduction

Deep learning networks trained on extensive medical image datasets have good
representation and recognition abilities, making them useful in clinical diagnosis
and classification [1]. However, large medical image datasets with high-quality
labels are still rare due to the high annotation costs. Moreover, medical image
datasets are typically collected during clinical diagnosis and treatment, often
with class imbalance due to the sample scarcity, e.g. the number of normal
samples is usually much higher than that of the diseased ones, or the number
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of disease samples across categories may vary. The imbalance might lead to
classification performance decrease [2].

A potential solution is to obtain synthetic medical images as augmented
training data via generative models. A generative model learns the distribution
of the dataset and then generates synthetic data by sampling from the learned
distribution. The representative generative techniques include Generative Adver-
sarial Networks (GANs) [3], Variational Autoencoders (VAEs) [4], Flow-based
models [5], and Diffusion-based models [6]. They have been extensively used in
medical images for data augmentation, such as cervical cell pathology section
images [7–9], fundus images [10], and chest X-ray images [11,12]. However, it is
important to note that models trained from scratch may be negatively impacted
by insufficient data in a certain category within the dataset. This is because
synthetic low-quality training data can harm the classifier’s performance. Fur-
thermore, a generative model trained from scratch only simulates the distribu-
tion of the given training data, meaning that all of its knowledge is derived from
existing data, thus leading to limited performance improvement.

A novel way to improve the quality of synthetic data without adding ad-
ditional data is to introduce a large pre-trained model. The large pre-trained
generative model is obtained by pre-training on a large number of unsuper-
vised web-scale images, so it has prior knowledge and is allowed to generalize
to novel tasks with only a small number of samples. We proposed a large pre-
trained generative model-based data augmentation method that can be applied
to medical image datasets with few images. Specifically, a large pre-trained gen-
erative model based on masked image modeling (MAGE) [13] is chosen as the
pre-trained model. The model is pre-trained on the ImageNet [14] dataset, sur-
passing Diffusion’s performance on the same generation task while using fewer
computing resources. To generate different class samples, an Adapter [15] layer
is implemented on the Encoder and Decoder modules of MAGE, and trained on
the image features represented by VQGAN [16]. Finally, two loss functions are
used to constrain training. Along with the basic image reconstruction loss, we
also introduce a vector quantization loss. This loss reduces the dimensionality
of the feature latent space between the Encoder and Decoder models, making
it easier to train with a small sample size and improving the generative model’s
performance.

The method was evaluated on three medical image datasets: Ham10000 [17],
ODIR-5k [18], and Kera-3k. Experimental results show that using our method
to generate samples as data augmentation can improve the classification per-
formance on downstream tasks, and is superior to commonly used generative
models such as StyleGAN2 [19], FastGAN [20] and Diffusion [6].

2 Method

Figure 1 (a) shows the overall structure of our approach. Our approach contains
three steps. At first a well-trained VQGAN [16] encoder converts medical images
from pixels to tokens. In the second step, we adapt the foundation generative
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Fig. 1. The framework of our method. We add an Adapter in each Transformer block
and apply the quantization loss Lq to adapt for medical images.

model, MAGE, with parameter-efficient training which can encode medical im-
ages into features and generate images simultaneously. At last, we introduce
vector quantization loss to reduce the difficulty of learning latent space in few-
shot conditions.

2.1 Preliminary

The main structure of the MAGE model consists of a fixed VQGAN tokenizer,
and a ViT-based encoder-decoder structure. VQGAN tokenizes the image into
a sequence of semantic tokens T = [ti]

N
i=1, ti ∈ RD of the image, where N is

the token sequence length. Before encoding, we concatenate a learnable class
token [t0] to the input sequence, then feed the token sequence into a Vision
Transformer (ViT) [21] encoder-decoder structure, its formulaic expression is as
follows

Zl = {[zi]Ni=0}l = Bl(Zl−1), l ∈ {0, 1, . . . , L− 1}, (1)

where Bl(·) represents the number l block of the encoder or decoder, L is the
block number, Zi represents the feature output by number i of the encoder
or decoder, where Z0 = {[zi]Ni=0}0 equals to [ti]

N
i=0. Each block contains an

MHA(Multi-Head Attention) module and an MLP network, shown as follows:

Z
′

l = MHA(LN(Zl−1)) + Zl−1, l ∈ {0, 1, . . . , L− 1}, (2)

Zl = MLP (LN(Z
′

l )), (3)

where Z
′
is the intermediate variable, LN(·) represents the LayerNorm module.

Let Y = [yi]
N
i=1 denote the latent tokens obtained from the tokenizer. The re-

construction loss is a cross-entropy loss between the ground-truth one-hot tokens
and the output of the decoder:

Lreconstructive = −EY ∈D(
∑

log p(yi|Y )). (4)
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MAGE utilizes iterative decoding in MaskGIT [22] to fill in the mask token
and generate the image iteratively. To generate an image during inference, it
begins with a blank canvas with all tokens masked out.

2.2 Adapter for MAGE

Performing full fine-tuning on the MAGE model to achieve generation will cause
a catastrophic forgetting problem [23], resulting in overwriting existing repre-
sentations in the model. Therefore, we use the Adapter method to fine-tune the
MAGE model. An Adapter is a neural network module that usually has a small
number of parameters. By inserting the Adapter into the pre-trained model,
one can keep the original parameters of the pre-trained model unchanged when
fine-tuning on new datasets for efficient training and preventing catastrophic
forgetting.

In our design, the Adapter method is introduced into each block B of both
encoder and decoder. We demonstrate the details inside one block in Figure 1 (b).
The red part is the Adapter, denoted as A(·), which is a bottleneck module that
contains a down-projection layer with parameters Wdown and an up-projection
layer with parameters Wup. The ReLU layer stands for a non-linear activation
function.

A(Z
′

l ) = ReLU(LN(Z ′
l) ·Wdown) ·Wup, (5)

Where the parameters of Wdown use Kaiming uniform initialize [24] and the
parameters of Wup is initialized as zero. l represents the number of the block.
A(·) is connected to the original MLP network (blue part) through the residual
connection via a scale factor s. With Adapter, Equation 3 becomes:

Zl = MLP (LN(Z
′

l)) + s ·A(Z
′

l ), (6)

During training, only the parameters of A(·) in Equation 6 are learnable.

2.3 Quantization loss

After encoding, the images become the feature vectors ZL−1 ∈ R(N+1)×D, which
are complex and contain redundant information. To compress these learned fea-
tures, vector quantization (VQ) methods have been proposed to construct a
dictionary of discrete vectors to approximate the actual continuous vectors [25].

The VQ method requires a latent embedding space q ∈ RK×D where K is the
size of a discrete latent space. We take z0,L−1 as the quantization module input,
where z0,L−1 is the class token of ZL−1 that contains the global information, as
shown in Figure 1 (a). The VQ objective uses the l2 error to move the embedding
vectors qi towards the feature logits z0,L−1,

Lquantization = ||sg [z0,L−1]− qi||22 + α||z0,L−1 − sg [qi] ||22, (7)
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where sg[·] stands for the stop-gradient operator that is defined as an identity
at forward computation time and has zero partial derivatives, thus effectively
constraining its operand to be a no-updated constant.

The final loss function consists of the reconstruction loss and quantization
loss, and a coefficient to control the loss ratio (default to 1), the calculation
formula is as follows,

L = Lreconstructive + β · Lquantization. (8)

3 Experiments

3.1 Setup

Dataset. The following three medical image datasets are employed in this study:
1)HAM10000 [17]: a dermatoscopic images dataset for skin lesions, 2)ODIR-
5k [18]: a fundus images dataset for diabetic retinopathy classification, 3)Kera-
3k: an anterior segment image for keratitis classification. The size of these
datasets is shown in Table 1. We varied the quantity of generated data for dif-
ferent categories in the dataset to balance overall numbers with original training
data. However, for categories with ample original data, like ’nv’ in HAM10000
and ’N’ in ODIR-5k, strict quantity adjustments might reduce augmentation
performance. Thus, we adjusted generated data amounts separately for these
categories.
Baselines. In limited data situations, some models like VAE may be hard to
train or easily break down, so we chose some commonly used generation methods
including FastGAN [20], StyleGAN2 [19], Latent Diffusion Model (LDM) [6] and
MAGE [13] as our comparison methods. FastGAN and StyleGAN2 are two GAN-
based generation methods that both contain a generator and a discriminator
and train adversarial, both are trained from scratch. LDM is a model based on
a diffusion algorithm and has a large parameter scale. In our study, we use the
pre-trained LDM and finetune it with the Adapter named Lora. MAGE is a
generative model based on masked image modeling (MIM), we use the model
trained from the pre-trained MAGE model as a comparison.
Task and Metric (1) Generation: In this study, the Fréchet Inception Distance
(FID) [26] was used to evaluate the generation quality by calculating the distance
between the training sets and generation sets, with lower values indicating better
quality. To avoid overfitting, we calculate the FID for both the training and test
sets and report the results separately. (2) Classification: After generating medical
images, we conduct experiments to evaluate the augmentation performance. The
training set of the classification model is composed of the original training set
and generation set from different generative models, which is class-balanced.
The classifier is trained on this new training set and test on the original test
set. The sample size of each data set is shown in Table 1. We fine-tune on two
commonly used classification models, ViT [21] and Swin Transformer [27], and
report two metric Accuracy (ACC) and Area Under the Curve (AUC) to measure
classification performance.
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Fig. 2. Comparison of medical images generated by FastGAN, StyleGAN2, LDM,
MAGE, and our method with real medical images, where four samples from differ-
ent classes of each dataset are visualized. Each column represents the same category
of images from different sources.

Implementation Details. We use the Adam [28] optimizer with a learning
rate of 5×10−4 for training generative model and 1×10−3 for training classifier,
where the generative model is trained for 1000 epochs and classifier is trained
for 100 epochs.

3.2 Image generation performance comparison

In Figure 2, we randomly select and demonstrate medical images generated by
several different generation methods, which can provide an intuitive reflection
of the image generation quality of each method. From Figure 2, we can observe
that the generated samples of FastGAN and StyleGAN2 are often blurred or
distorted with poor image quality. Additionally, there are noticeable differences
between the features of images generated by LDM and real images, particularly
in the ODIR data set. The image generated by MAGE closely resembles the
real image in style, but cannot learn correct disease characteristics, such as the
inconsistent color and shape of lesions in skin diseases. Our method, based on
MAGE, improves the generation of key features of disease lesions, resulting in
skin lesions, blood vessels in fundus images, and keratitis lesions that are much
closer to the real images.

After the sample analysis, we measured the FID metrics between the gener-
ation sets and the original datasets as a quantitative evaluation of the method
generation performance. The FID results of the three datasets are recorded in
Table 2, Table 3, Table 4, where we underline the optimal train set FID and
the optimal test set FID in each column. Our approach has demonstrated op-
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timal results in over half of the generation performance evaluations. On the
HAM10000 and Kera-3k datasets, our method and FastGAN both demonstrate
superior generation performance in certain categories. This is because the MAGE
model, which serves as the foundation for our method, has weaker generation
performance than FastGAN. However, our proposed method enhances the gen-
eration performance of the MAGE model, bringing it up to par with the optimal
FastGAN method. On ODIR datasets, MAGE models demonstrate excellent
generation performance, which reflects the advantage of higher adaptability of
large pre-trained generative models. Our method further improves the genera-
tion performance based on the MAGE model and achieves the highest score in
most categories.

Table 1. The size of three medi-
cal datasets.

Dataset
HAM10000

bkl nv df mel vasc bcc akiec

train 1099 6705 115 1113 142 514 327
test 217 908 44 171 35 93 43

generate 901 3295 1885 887 1858 1486 1673

Dataset
ODIR-5k

N D G C A H M O

train 3104 1706 326 313 280 193 261 964
test 1255 708 128 142 123 80 98 533

generate 1896 1294 674 687 720 807 739 1036

Dataset
Kera-3k

amoeba bacteria fungal hsk

train 294 437 818 1079
test 77 71 117 122

generate 706 563 1182 921

Table 2. Generation performance comparison of
ODIR-5k using FID(↓).

Method Dataset
Category

N D G C A H M O

FastGAN
train 190.4 139.1 130.1 344.5 277.4 220.4 182.8 315.5
test 191.1 141.4 136.5 356.2 280.5 233.8 196.3 324.6

StyleGAN2
train 132.4 157.4 115.6 98.0 142.7 140.5 117.9 51.0
test 133.7 159.3 129.4 108.4 146.4 149.2 125.8 154.2

LDM
train 89.0 130.1 129.7 164.5 130.7 179.9 175.8 112.2
test 90.3 132.1 136.0 187.5 142.0 196.5 194.0 120.4

MAGE
train 56.4 59.5 80.8 110.7 74.2 86.1 70.3 56.3
test 59.5 61.6 97.7 134.3 80.9 93.0 89.2 57.7

Ours(w/o VQ)
train 46.8 55.5 69.4 96.8 70.5 85.0 76.8 63.1
test 51.0 58.5 95.6 116.4 77.0 91.0 94.5 68.6

Ours
train 64.4 53.8 69.4 59.3 69.4 91.2 67.7 57.0
test 69.3 56.0 95.6 83.6 79.4 101.8 87.8 59.19

Table 3. Generation performance comparison
of HAM10000 using FID(↓).

Method Dataset
Category

bkl nv df mel vasc bcc akiec

FastGAN
train 84.7 55.9 109.6 77.8 108.5 74.6 100.0
test 114.9 67.0 140.2 114.3 189.0 116.9 160.6

StyleGAN2
train 99.4 103.3 150.1 112.4 167.9 92.3 134.7
test 128.1 116.4 171.1 146.1 227.6 131.4 200.7

LDM
train 102.1 135.2 127.5 93.6 163.0 91.4 138.6
test 124.1 145.8 158.0 124.1 231.2 130.5 206.7

MAGE
train 85.7 64.9 121.9 72.7 115.5 97.5 125.8
test 121.4 77.7 161.8 114.2 194.8 142.0 197.7

Ours(w/o VQ)
train 99.6 77.7 136.1 85.3 126.2 100.8 133.7
test 133.7 90.0 170.4 125.5 203.2 145.9 203.3

Ours
train 71.3 76.9 112.6 67.4 114.0 98.4 105.7
test 114.5 91.5 161.1 112.7 184.5 141.7 166.6

Table 4. Generation performance
comparison of Kera-3k using FID(↓).

Method Dataset
Category

amoebabacteria fungal hsk

FastGAN
train 79.8 86.7 71.7 74.7
test 123.3 119.1 115.0 116.7

StyleGAN2
train 83.1 86.0 77.3 73.1
test 140.7 130.6 130.1 122.2

LDM
train 104.7 80.0 80.9 101.3
test 164.0 126.7 118.2 137.9

MAGE
train 103.8 87.7 88.5 94.2
test 161.0 155.0 134.2 144.1

Ours(w/o VQ)
train 83.9 75.4 64.7 66.9
test 142.1 121.5 113.6 111.8

Ours
train 81.4 71.7 58.2 59.4
test 136.6 118.0 107.6 105.5

Furthermore, we analyze the categories in which our method exhibits signif-
icant disadvantages. Notably, the three classes with the largest gaps are class
N in the ODIR dataset (with an average difference of 18.0 from the optimal
method), and classes nv and bcc in the HAM10000 dataset (with average dif-
ferences of 22.8 and 24.3 from the optimal method, respectively). Table 1 shows
that the first two categories have relatively high sample sizes of 3104 and 6705
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Table 5. Performance comparison of different methods for data augmentation.

Ham10000 ODIR-5k Keratitis

ViT Swin ViT Swin ViT Swin

ACC(%) AUC ACC(%) AUC ACC(%) AUC ACC(%) AUC ACC(%) AUC ACC(%) AUC

Baseline 68.16 0.879 67.30 0.877 47.99 0.748 45.74 0.747 51.67 0.780 46.77 0.740

FastGAN 71.27 0.907 71.01 0.908 46.95 0.725 47.60 0.723 51.42 0.750 52.45 0.755

StyleGANv2 70.61 0.902 70.54 0.901 47.01 0.728 47.14 0.715 52.19 0.747 49.61 0.761

LDM 72.66 0.916 73.19 0.927 47.60 0.770 40.00 0.732 48.83 0.700 51.67 0.704

MAGE 72.86 0.910 69.62 0.897 49.33 0.781 48.77 0.766 51.67 0.764 50.90 0.770

Ours(w/o VQ) 72.07 0.912 71.34 0.918 50.86 0.782 47.89 0.751 50.12 0.729 49.61 0.726

Ours 73.19 0.923 72.60 0.921 50.30 0.783 48.90 0.771 53.48 0.781 52.19 0.784

respectively. This also proves that our method is more applicable in the case of
limited sample size, while has no obvious performance advantage in the case of
sufficient sample size.

3.3 Classification performance after augmentation

The way to use the generated data as data augmentation is to add it to the train-
ing set, which addresses the issue of limited data size and unbalanced category
numbers in the original set, ultimately improving classification performance. Ta-
ble 5 shows that our approach has yielded the best results in most cases (marked
bold). Only on the HAM10000 dataset, when Swin Transformer is used as the
classifier, the augmentation effect of LDM exceed that of our method. It is worth
noting that the difference between the two is not large (only 0.59% on ACC and
0.006 on AUC), and in all other cases, the augmentation performance of our
method is significantly better than that of LDM. In addition, we observed that
in ODIR-5k dataset, when ViT was used as the classification model, the abla-
tion method without VQ loss achieved better comprehensive classification per-
formance, which was consistent with the data in Table 2, where the generation
performance of ablation methods is better in some categories. The ODIR dataset
has a large sample size, which may explain the performance loss of the VQ loss.
This confirms that our method is more suitable for cases with small sample sizes.
Overall, our method achieves optimal results in most indicators and suboptimal
results in others. Additionally, our method outperforms all other methods in
average classification performance, indicating that it has the best augmentation
performance. Data augmentation using our method can significantly improve
the performance of medical image classification tasks, among which the aver-
age ACC and AUC on HAM10000, ODIR-5k and Kera-3k datasets increased by
5.16%, 2.74%, 3.62%, and 0.042, 0.030, 0.023, respectively.

4 Discussion

In this study, we propose a data augmentation technique for medical images by
adapting a large pre-trained genetive model. We introduce the Adapter and a
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vector quantization loss to finetune MAGE, which is a generative data augmen-
tation method that is more suitable for limited data size. Compared with the
existing methods, our approach produces images that exhibit advantages in both
visual sample evaluation and comprehensive quantitative evaluation. Addition-
ally, using the generated samples led to a significant improvement in classification
performance, as shown in Table 5. The limitation of our study is that we only use
optical medical images for the experiment, which is closer to the general images.
Different Adapter placement positions may be suitable for other modalities of
medical images like X-ray or MRI, which can be an interesting topic for future
works. In conclusion, our study shows that utilizing large pre-trained genera-
tive models as data augmentation sources is a promising approach for numerous
medical image datasets with limited samples.
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12. Kai Packhäuser, Lukas Folle, Florian Thamm, and Andreas Maier. Generation of
anonymous chest radiographs using latent diffusion models for training thoracic
abnormality classification systems. In 2023 IEEE 20th International Symposium
on Biomedical Imaging (ISBI), pages 1–5. IEEE, 2023.

13. Tianhong Li, Huiwen Chang, Shlok Mishra, Han Zhang, Dina Katabi, and Dilip
Krishnan. Mage: Masked generative encoder to unify representation learning and
image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2142–2152, 2023.

14. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee, 2009.

15. Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang,
and Ping Luo. Adaptformer: Adapting vision transformers for scalable visual recog-
nition. Advances in Neural Information Processing Systems, 35:16664–16678, 2022.

16. Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-
resolution image synthesis. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 12873–12883, 2021.

17. Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a
large collection of multi-source dermatoscopic images of common pigmented skin
lesions. Scientific data, 5(1):1–9, 2018.

18. Ning Li, Tao Li, Chunyu Hu, Kai Wang, and Hong Kang. A benchmark of ocular
disease intelligent recognition: One shot for multi-disease detection. In Bench-
marking, Measuring, and Optimizing: Third BenchCouncil International Sympo-
sium, Bench 2020, Virtual Event, November 15–16, 2020, Revised Selected Papers
3, pages 177–193. Springer, 2021.

19. Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and
Timo Aila. Training generative adversarial networks with limited data. Advances
in neural information processing systems, 33:12104–12114, 2020.

20. Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. Towards faster
and stabilized gan training for high-fidelity few-shot image synthesis. In Interna-
tional Conference on Learning Representations, 2020.

21. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg



Adapting Pre-trained Generative Model to Medical Image 11

Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

22. Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit:
Masked generative image transformer. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 11315–11325, 2022.

23. Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher
Kanan. Remind your neural network to prevent catastrophic forgetting. In Euro-
pean Conference on Computer Vision, pages 466–483. Springer, 2020.

24. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016.

25. Kuilin Chen and Chi-Guhn Lee. Incremental few-shot learning via vector quanti-
zation in deep embedded space. In International Conference on Learning Repre-
sentations, 2020.

26. Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local
nash equilibrium. Advances in neural information processing systems, 30, 2017.

27. Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,
and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 10012–10022, 2021.

28. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.


