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Abstract. The heterogeneity of neurological conditions, ranging from
structural anomalies to functional impairments, presents a significant
challenge in medical imaging analysis tasks. Moreover, the limited avail-
ability of well-annotated datasets constrains the development of robust
analysis models. Against this backdrop, this study introduces a novel
approach leveraging the inherent anatomical symmetrical features of the
human brain to enhance the subsequent detection and segmentation
analysis for brain diseases. A novel Symmetry-Aware Cross-Attention
(SACA) module is proposed to encode symmetrical features of left and
right hemispheres, and a proxy task to detect symmetrical features as
the Symmetry-Aware Head (SAH) is proposed, which guides the pre-
training of the whole network on a vast 3D brain imaging dataset com-
prising both healthy and diseased brain images across various MRI and
CT. Through meticulous experimentation on downstream tasks, includ-
ing both classification and segmentation for brain diseases, our model
demonstrates superior performance over state-of-the-art methodologies,
particularly highlighting the significance of symmetry-aware learning.
Our findings advocate for the effectiveness of incorporating symmetry
awareness into pretraining and set a new benchmark for medical imaging
analysis, promising significant strides toward accurate and efficient diag-
nostic processes. Code is available at https://github.com/bitMyron/sa-
swin.

Keywords: Symmetry-Aware Cross-Attention (SACA) · Self-Supervised
Learning · Neuroimaging Diagnosis

1 Introduction

In many neurological and psychiatric conditions, the symmetry nature of the left
and right brain hemispheres plays a pivotal role in brain disease diagnosis and
monitoring, often acting as a precursor to various disorders. The measurement of
pathological structural and functional asymmetries could also be used in manag-
ing disease progression and the effectiveness of treatment [18]. The significance of
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these asymmetrical alterations is especially marked in diseases like Alzheimer’s
disease (AD) [14] and schizophrenia [22], where hemispheric symmetry is also
considered as one of the most indicative biomarkers by radiologists. Figure 1
showcases instances of pathologies affecting the brain’s symmetry.

Fig. 1: Brain T1 images: (a) represents a healthy case, displaying symmetrical
shape, structure, and image intensity. (b)-(d) depict patients with a brain tumor,
Alzheimer’s Disease, and focal epilepsy, respectively, and the noticeable struc-
tural asymmetry parts are circled out.

Leveraging the clinical experience and identifying such asymmetrical features
in neuroimaging analysis tasks can further enhance the efficacy of deep learn-
ing tools used in triage, annotation, and diagnosis. Certain approaches attempt
to identify asymmetries by subtracting the L/R flipped image from the original
and using the resulting subtraction as input for deep neural networks [12]. Other
strategies involve segmenting the regions of interest on the original and flipped
images separately, employing the pair of segmentation masks to compute an
additional loss to improve model performance [13]. However, hemispheric sym-
metrical features were only used for pre-processing or data augmentation rather
than being encoded within the network structure, which limits the generalization
ability to extend to the general neuroimaging analysis process.

To better leverage symmetrical features, we introduce an innovative Symmetry-
Aware Cross-Attention (SACA) module, advancing the attention mechanism’s
application in neuroimaging analysis. Our module enhances the transformer
blocks’ capabilities by implementing cross-attention mechanisms between the
original input and its symmetrical counterpart, compelling the network to fo-
cus on symmetrical comparisons and semantic feature encoding. This approach
mimics the expert diagnostic strategy, leveraging self-supervised and supervised
training processes to improve the model’s understanding of brain anatomy and
its inherent symmetries.

The SACA module can be pretrained with a substantial amount of data based
on a self-supervised learning framework to be further used for downstream tasks,
including disease diagnosis, brain structure, and lesion segmentation. The ad-
vancement of self-supervised learning has been illustrated in previous work [1],
which involve generating pre-text tasks, including inpainting [10], rotation [9]
and contrastive coding [2], to embed intrinsic features. Besides these tasks widely
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used in self-supervised learning methods, we introduce a Symmetry-Aware Head
(SAH) to enhance the pretraining process by focusing on the contrastive sym-
metrical features of the left and right hemispheres. Since they are entangled with
the patient status (i.e., healthy or disease), the hemispheric symmetrical features
are utilized in computing the symmetry-aware loss.

To fulfill the pretraining, we have compiled an extensive dataset comprising
brain MRI and CT images from both healthy subjects (assumed to be symmet-
rical) and diseased subjects (assumed with asymmetrical features). Empirical
experiments of our approach, through extensive pretraining on brain CT and
MRI datasets and subsequent evaluations on various classification and segmen-
tation tasks, underscore a notable improvement over existing baseline models.

In general, our primary contributions are outlined as follows:

• We introduce a novel Symmetry-Aware Cross-Attention (SACA) module,
which leverages a cross-attention mechanism to analyze the relationship be-
tween an image and its symmetrical counterpart, facilitating a deeper un-
derstanding of brain anatomy and its inherent symmetries.

• The proposed network is pretrained on a symmetry-aware self-supervised
process and can be further applied in real-world clinical datasets and analysis
tasks, including classification and segmentation for multiple modalities.

• A vast dataset spanning MRI and CT modalities has been curated, and our
approach has undergone extensive testing and demonstrated state-of-the-art
performance on diagnosis and segmentation tasks.

2 Methodology

In this study, we leverage a substantial corpus of 3D brain imaging data, denoted
as I0 = {In}. Each image is associated with a binary label Y0 = {0, 1} indicating
the health status of the subject (healthy or diseased), where y0n ∈ Y0. Our
objective is to train a model to encapsulate structural insights into the human
brain. The comprehensive pipeline is depicted in Figure 2.

2.1 Preprocssing

A midway registration pipeline was introduced to standardize the input image to
position the brain within a standardized 3D coordinate framework, ensuring that
flipping the image volume along its sagittal axis could generally map the left and
right cerebral hemispheres correctly. Given an original input image I, we first
generate its mirror image I′ by flipping I across the vertical plane of the image.
We then obtain the affine transformation T : I → I′ with the widely used linear
registration tool FMRIB’s Linear Image Registration Tool (FLIRT) [17]. Based
on the generated transformation matrix, the midway points of all transformation
operations can be further calculated and formed the midway transformation T1/2.
The midway transformation is applied to I, resulting in Ī, whose sagittal plane
is perfectly aligned with respect to the vertical plane of the image volume. By
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Fig. 2: (a) The process of midway registration to align input images; (b) The
framework applied to input sub-volumes and their sagittal symmetrical counter-
parts. This framework is augmented by the Symmetry-Aware Cross-Attention
(SACA) module and is optimized through a composite loss function that inte-
grates inpainting, rotation, contrastive, and symmetry losses.

the midway registration, the simple flip of the input image ensures the mirroring
of the left and right hemispheres, assisting the model in learning and utilizing
the inherent hemispheric symmetry of the human brain.

After the midway registration, random sub-volumes, denoted as X = {xn},
are extracted as inputs to networks from the collection of all aligned images
Ī = {Īn}. Since the input images are standardized by the midway registration,
for each patch x ∈ RH×W×D, the mirrored counterpart x′ with respect to the
sagittal plane Φs can be identified and can be flipped to obtain x̃. Note that the
generated x̃ is expected to closely resemble the original patch x, barring minor
structural discrepancies inherent to the intrinsic hemispheric symmetry of the
human brain. Both original patch x’s and their flipped symmetrical counterparts
x̃’s are used as the input to the encoder network as sub-volumes.

As illustrated in Figure 2, two distinct rotations R = {r1, r2} are conducted
on both sub-volumes and two random inner cutouts C = {c1, c2} are conducted
on original sub-volume x, resulting in augmented sub-volumes {x1,x2, x̃1, x̃2}.
The augmented sub-volumes are segmented into patches of the size (h,w, d),
ending up with a sequence of the length H

h × W
w × D

d . These patches are pro-
cessed through an embedding network and subsequently passed into a 3D Sliding-
window (Swin) Transformer architecture [20], which consists of four stages and
eight transformer layers. This results in a reduced sequence of the length H

16h ×
W
16w × D

16d with the embedding feature dimension 768.
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Fig. 3: Symmetry-Aware Cross-Attention (SACA) Module: (a) The computation
of attention for each token within the SACA module; (b) Cross-attention calcu-
lation of SACA module structure.

2.2 Symmetry-Aware Cross-Attention (SACA) Module

Following the Swin Transformer Encoder [11], we introduce a Symmetry-Aware
Cross-Attention (SACA) module to foster deep symmetrical feature alignment
and referencing. The SACA module processes input embedding sequences f ,
applying self-attention mechanisms to f and cross-attention to the flipped sym-
metrical counterpart f̃ . This dual attention strategy, as depicted in Figure 3, is
intended to exchange information between the raw sub-volume and the flipped
symmetrical counterpart.

The cross-attention mechanism within this module is represented as follows:

SACA(f , f̃) = Softmax

(
QK̃T

√
D

)
Ṽ ,where

{Q = fWQ

K̃ = f̃WK

Ṽ = f̃WV

. (1)

Q represents the queries generated from the features of the original patch f ,
and K̃ and Ṽ are keys and values generated from the counterpart patch f̃ , with
D denoting the dimensionality of the query and key vectors. The matrices W
are learnable weights for the query, key, and value transformations within the
SACA module. With our novel SACA module, the contrastive information from
the original patch and its flipped symmetrical counterpart could be utilized, and
the level of symmetry of the patch could be learned along the process, enabling
the network to recognize symmetrical features of input brain images.

2.3 Symmetry-Aware Pretraining Proxies

Upon obtaining the encoded features from the SACA-based encoder, they are
directed to four distinct proxy heads, each responsible for a specific pretraining
task. The proxies include one symmetry-aware head that identifies the symmet-
rical features of the input sub-volumes and three heads that deal with intrinsic
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features of the input sub-volume (i.e., inpainting, rotation, and contrastive cod-
ing) as shown in Figure 2.

The Symmetry-Aware Head (SAH) consists of a max pooling layer followed
by a multi-layer perceptron (MLP), which distills the features for an original
input patch and the symmetrical counterpart as fs and f̃s. These features serve
as the foundation of computing the conditional symmetry loss, expressed as:

LSymmetry = − log

∑
exp(sim(fs, f̃s)/τ) · y0∑
exp(sim(fs, f̃s)/τ)

, (2)

where y0 indicates the subject’s health status, with 1 for healthy control and
0 for patients. The parameter τ is a temperature factor adjusting the logits’
scaling. The cosine similarity sim(a,b) is used to measure the similarity between
embedded features. The core premise of this formulation is that for subjects with
healthy brains, a given patch and its symmetrical counterpart should exhibit
similar visual and structural characteristics, whereas deviations and asymmetries
are expected in the presence of pathological conditions, reflecting the brain’s
asymmetrical response to disease.

The heads for intrinsic feature awareness follow [27], including the Inpainting
Head (IH), defined as a decoder to reconstruct the occluded voxels; the Rotation
Head (RH), defined by an MLP classifier to identify the rotation angles; and the
Contrastive Coding Head (CH), defined by two MLP layers to distinguish the
present sub-volumes from other sub-volumes. The losses are defined as:

LInpainting = ∥fp − x∥1
LRotation = −r log(Softmax(fr)),

LContrastive = − log
exp(sim(f ci , f

c
j )/τ)∑

1k ̸=i exp(sim(f ci , f
c
k)/τ)

,

(3)

where fp, fr, f c represent the concatenated output from each head, and x is
the input sub-volume. Through comprehensive grid search experimentation, the
four losses are configured to be evenly summed up for pretraining, balancing the
contribution of each task effectively. The pretrained symmetry-aware network
can be further applied for downstream tasks, as shown in Section 3.

3 Experiments and Results

We evaluated our proposed approach by pretraining on large neuroimaging
datasets and downstream classification and segmentation tasks.

3.1 Datasets and Downstream Tasks

We curated two large datasets for brain image pretraining using head CT and
brain MRI images separately. The MRI dataset comprises 3D T1 images of
3,509 healthy adults and 2,917 patients sourced from a variety of publicly avail-
able datasets [4,29,24,23,19,16,3,16] (more details in supplementary). The CT
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dataset is derived from our proprietary in-house collection, including 2025 im-
ages from healthy individuals and 4693 images from patients afflicted with a
range of brain diseases, with images from three brain diseases (i.e., hemorrhage,
fracture, midline shift) reserved for downstream tasks.

For MRI-based evaluations, we assess the zero-shot and few-shot classification
capabilities of our model across several disease identification tasks, including
Focal Epilepsy [25], ADHD [5], and Schizophrenia [26]. Furthermore, we explore
the model’s transfer learning proficiency in segmentation tasks using images with
different modalities from the MRI pretraining. This includes the BraTS2021
dataset [3] and the MSSEG2016 dataset [8].

For CT imaging, we conducted few-shot training using reserved in-house data
of three brain diseases, including intracranial hemorrhage, bone fracture, and
midline shift, and evaluated the performance on the public dataset CQ500 [7] to
demonstrate the model’s versatility across varied clinical conditions.

3.2 Implementation Details

The proposed model undergoes pretraining with distinct settings for image clas-
sification and segmentation tasks. Specifically, the whole image classification
task pretraining is conducted with a batch size of 2 and images resized to
160×160×160, and a batch size of 4 and sub-volume dimensions of 96×96×96
was used for segmentation-related pretraining. The pretraining phase is executed
with a learning rate of 6×10−6 over 300 epochs. For downstream tasks, the learn-
ing rate is set to 1× 10−5, spanning 100 epochs. All models are trained utilizing
NVIDIA Tesla V100 GPUs.

The pretrained models are further experimented with downstream tasks un-
der a 5-fold cross-validation approach across all experiments, with the exception
of the multiple sclerosis lesion segmentation on MSSEG, which has a prede-
fined validation set [21]. The average performance scores, including Area under
the ROC Curve (AUC), F1-measure, and Dice Similarity Coefficient (DSC), are
reported.

3.3 Results

The classification outcomes are delineated in Tables 1 and 2. In the supervised
fine-tuning scenario (checked under “+SFT”), our model consistently surpassed
the performance of the Swin MLP [27] across all evaluated downstream tasks,
especially in some diseases that display significant asymmetrical features, such
as ADHD and Midline Shift. Besides, our method has achieved comparable per-
formance in CT disease diagnosis as that of [6], but only hundreds of labeled
cases were used for fine-tuning, much less than in [6] where 313,318 scans were
collected and manually labeled. This underscores the significant advantage of
incorporating symmetrical awareness during the pretraining phase.

Furthermore, we assessed the impact of symmetrical awareness in a zero-shot
learning context. Remarkably, our pretrained model exhibited superior zero-shot
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Table 1: Benchmark methods on the MRI T1-only classification tasks.

Experiments
Focal Epilepsy Schizophrenia ADHD

+Pretrain +SACA +SFT AUC F1 AUC F1 AUC F1

Swin MLP [27]
✗ ✗ ✓ 0.678 0.683 0.656 0.810 0.685 0.625
✓ ✗ ✗ 0.522 0.651 0.594 0.749 0.514 0.609
✓ ✗ ✓ 0.713 0.695 0.627 0.803 0.642 0.645

Ours ✓ ✓ ✗ 0.631 0.683 0.663 0.760 0.515 0.625
✓ ✓ ✓ 0.778 0.788 0.719 0.836 0.792 0.727

capabilities in almost all tasks. This indicates that our pretraining strategy effec-
tively captures critical pathological features based on symmetry characteristics,
facilitating generalization to novel tasks without requiring task-specific data.

Table 2: Benchmark methods on the CT classification tasks evaluated on the
CQ500 dataset [6].

Experiments
Hemorrhage Fracture Midline Shift

+Pretrain +SACA +SFT AUC F1 AUC F1 AUC F1
Qure.ai [6] ✗ ✗ ✓ 0.942 0.761 0.962 0.508 0.970 0.704

Swin MLP [27]
✗ ✗ ✓ 0.872 0.776 0.918 0.460 0.926 0.640
✓ ✗ ✗ 0.751 0.685 0.781 0.353 0.788 0.413
✓ ✗ ✓ 0.911 0.748 0.952 0.469 0.942 0.620

Ours ✓ ✓ ✗ 0.793 0.722 0.803 0.267 0.866 0.508
✓ ✓ ✓ 0.958 0.781 0.969 0.513 0.986 0.728

The assessment of models’ proficiency in adapting to segmentation tasks is
summarized in Table 3, which manifests the superior performance of our method.
Additionally, we conducted an ablation study to discern the relative contribution
of our proposed SACA module and SAH proxy. Both the SAH only pretraining
process and the SACA module could improve the performance of segmentation
steadily, and the combination of all pretraining proxies and the novel SACA
module could further yield the most substantial benefits, underscoring the syn-
ergetic effect of combining these diverse learning strategies. This comprehensive
evaluation demonstrates our method’s superior capability in leveraging pretrain-
ing proxies to enhance model performance on segmentation tasks, highlighting
its potential for advancing medical image analysis.

4 Conclusion

Our study introduces an innovative framework utilizing 3D brain imaging data
of various modalities, significantly enhancing neuroimage analysis by encod-
ing symmetry-aware features in deep neural networks. The integration of the
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Table 3: Benchmark methods and ablation study of our method on the MRI seg-
mentation tasks. “IRC” represents commonly used pretrain heads for inpainting
(I), rotation (R), and contrastive (C).

Experiments
BraTS [3] MSSEG [8]

+IRC +SAH +SACA DiceET DiceTC DiceWT DiceAvg Dice
nnU-Net [15] ✗ ✗ ✗ 0.883 0.927 0.913 0.908 -
TransBTS [28] ✗ ✗ ✗ 0.868 0.911 0.898 0.891 -
SwinUNETR [11] ✗ ✗ ✗ 0.891 0.933 0.917 0.913 0.594

Ours
✗ ✓ ✗ 0.897 0.935 0.920 0.917 0.615
✗ ✗ ✓ 0.901 0.937 0.928 0.922 0.640
✗ ✓ ✓ 0.909 0.940 0.935 0.928 0.654
✓ ✓ ✓ 0.912 0.946 0.940 0.932 0.680

Symmetry-Aware Cross-Attention (SACA) module and the symmetry-aware pre-
training proxy has shown remarkable improvements in classification and segmen-
tation tasks, setting new benchmarks over existing models. This work highlights
the critical role of anatomical symmetry in neuroimaging analysis and suggests
a promising direction for developing more accurate, robust, and generalized AI
models in healthcare leveraging intrinsic anatomical features.
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