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Abstract. To accelerate Magnetic Resonance (MR) imaging procedures,
Multi-Contrast MR Reconstruction (MCMR) has become a prevalent
trend that utilizes an easily obtainable modality as an auxiliary to sup-
port high-quality reconstruction of the target modality with under-sampled
k-space measurements. The exploration of global dependency and com-
plementary information across different modalities is essential for MCMR.
However, existing methods either struggle to capture global dependency
due to the limited receptive field or suffer from quadratic computational
complexity. To tackle this dilemma, we propose a novel Frequency and
Spatial Mutual Learning Network (FSMNet), which efficiently explores
global dependencies across different modalities. Specifically, the features
for each modality are extracted by the Frequency-Spatial Feature Extrac-
tion (FSFE) module, featuring a frequency branch and a spatial branch.
Benefiting from the global property of the Fourier transform, the fre-
quency branch can efficiently capture global dependency with an image-
size receptive field, while the spatial branch can extract local features.
To exploit complementary information from the auxiliary modality, we
propose a Cross-Modal Selective fusion (CMS-fusion) module that selec-
tively incorporate the frequency and spatial features from the auxiliary
modality to enhance the corresponding branch of the target modality.
To further integrate the enhanced global features from the frequency
branch and the enhanced local features from the spatial branch, we
develop a Frequency-Spatial fusion (FS-fusion) module, resulting in a
comprehensive feature representation for the target modality. Extensive
experiments on the BraTS and fastMRI datasets demonstrate that the
proposed FSMNet achieves state-of-the-art performance for the MCMR
task with different acceleration factors.

Keywords: Magnetic Resonance Imaging · Multi-Contrast · Fourier
Transform · Mutual Learning.

1 Introduction

Accelerated Magnetic Resonance (MR) imaging, which reconstructs MR images
from under-sampled k-space measurements, can significantly reduce the cost of
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the MR imaging procedure and improve the patient experience [17,7,3]. However,
the aliasing artifacts resulting from insufficient sampling often degrade the image
quality and compromise clinical diagnoses [25]. In clinical practice, multi-contrast
MR images, such as T1 and T2 weighted images (T1WIs and T2WIs), are often
simultaneously acquired to provide complementary structural information for
diagnosis and treatment planning. Recently, multi-contrast MR reconstruction
(MCMR) [23,12] has become a prevalent trend that utilizes an easily obtainable
modality (e.g., T1WIs) as an auxiliary to support high-quality reconstruction of
under-sampled target modalities (e.g., T2WIs).

For multi-contrast MR images, similar structural features are distributed
across different regions within each modality, and complementary information
exists across different modalities. Therefore, the inherent problem of the MCMR
task is how to comprehensively explore long-range dependencies within each
modality and sufficiently leverage complementary information from the auxiliary
modality. Toward this goal, a series of methods [5,10,21,19,20] integrate multi-
modal features based on convolutional neural networks (CNNs). However, the
actual receptive field of CNNs is restricted due to the vanishing gradient issue,
thus failing to capture global dependencies. Recent advances in vision transform-
ers [2] have led to self-attention-based feature integration methods [6,9], enabling
the modeling of long-range dependencies and enhancing the performance of the
MCMR task. However, these methods [6,9] face significant challenges in clinical
deployment due to their quadratic computation complexity (O(N2) for N to-
kens). Therefore, there is highly demanded to develop an efficient method that
can capture global dependencies and extract complementary information from
both modalities without introducing a heavy computational burden.

Inspired by [13,24], we resort to frequency information in the Fourier domain
as an efficient global feature extractor. Since each pixel in the Fourier domain
interacts with all pixels in the spatial domain, the frequency features naturally
encompass global properties and can achieve an image-size receptive field. Thus,
the global features extracted in the Fourier domain complement the local features
extracted in the spatial domain, providing a more efficient way for global feature
interaction across different modalities. In light of this, reconstruction accuracy
for the target modality can be improved by addressing the following issues: 1)
How to enhance the feature representation of each modality with the assistance
of the global view from the Fourier domain. 2) How to effectively integrate the
global frequency and local spatial features across different modalities.

In this work, we propose a novel Frequency and Spatial Mutual learning
Network (FSMNet) for MCMR, offering an efficient method to extract and in-
tegrate global and local features across different modalities. FSMNet extracts
features for each modality using a stack of Frequency-Spatial Feature Extraction
(FSFE) modules, which include a frequency branch and a spatial branch. The fre-
quency branch is designed to capture global features with an image-size receptive
field, while the spatial branch specializes in extracting local structural features.
To fully incorporate complementary information from the auxiliary modality,
we introduce a Cross-Modal Selective fusion (CMS-fusion) module. This module



Accelerated MCMR via Frequency and Spatial Mutual Learning 3

Fig. 1. Overview of FSMNet: In each stage, the FSFE module extracts global and
local features from the frequency and spatial branches, respectively. The CMS-fusion
module integrates the multi-modal features for each branch, and subsequently, the FS-
fusion module combines the features across the frequency and spatial branches.

selectively integrates frequency and spatial features from the auxiliary modality
to enhance the respective branch of the target modality. To further integrate
enhanced global features from the frequency branch and enhanced local features
from the spatial branch, we present a Frequency-Spatial fusion (FS-fusion) mod-
ule that exchanges beneficial information across these two branches based on an
adaptive attention map. The main contributions are summarized as:

– Our FSMNet provides an efficient method for capturing global dependency
via Fourier transform. The proposed FSFE module enhances feature repre-
sentations for each modality by extracting global features from the frequency
branch and local features from the spatial branch. (§2.1)

– We propose a CMS-fusion module to enhance global and local features
by selectively incorporating complementary information from the auxiliary
modality, along with an FS-fusion module to further integrate the enhanced
global and local features for the target modality. (§2.2)

– Experimental results on two MRI datasets (BraTS [14] and fastMRI [22])
demonstrate that FSMNet outperforms existing MCMR methods across var-
ious acceleration factors. (§3.2)
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2 Methodology

An overview of FSMNet is depicted in Fig. 1. Given the under-sampled target
image x̂tar and the fully-sampled image xaux from the auxiliary modality, FSM-
Net aims to reconstruct a high-quality image Itar for the target modality. Each
modality comprises two branches, the frequency branch (green lines) and the
spatial branch (purple lines). In each encoder stage (Stage 1-3), the FSFE mod-
ule extracts global features from the frequency branch and local features from the
spatial branch. A total of 4 sets of features are encoded for the two modalities.
The CMS-fusion module selectively integrates features from both modalities to
generate enhanced global and local features for the target modality, which are
mutually enhanced by the subsequent FS-fusion module. The neck stage mirrors
the encoder stages but omits the downsample operation. As only target modal-
ity is decoded, the decoder stage (Stage 4-6) consist of the upsample operation,
FSFE module, and FS-fusion module. The image Ispa

tar recovered by the spatial
branch is considered the high-quality image Itar for the target modality.

2.1 Frequency-Spatial Feature Extraction

Since similar structural features are distributed across different regions in an
MR image, improving MRI reconstruction performance entails capturing global
dependency and integrating similar features from various image locations. To
address the limitation of CNNs in global modeling, we propose the Frequency-
Spatial Feature Extraction (FSFE) module. Benefiting from the global property
of Fourier transform, the FSFE module efficiently extracts local and global fea-
tures through the spatial and frequency branches for both modalities.

Taking the i-th stage of the target modality as an example, the input spatial
and frequency features (i.e., F i−1

ts and F i−1
tf obtained from the previous stage)

are fed into the spatial and frequency branches, respectively,

F̃ i
ts = f i

ts(F
i−1
ts ), F̃ i

tf = f i
tf (F

i−1
tf ), (1)

where f i
ts(·) and f i

tf (·) represent the networks for the spatial and frequency
branches at the i-th stage for the target modality. As illustrated in Fig. 1 (a), the
spatial branch consists of a cascade of residual convolutional blocks [8], extracting
local features within the limited receptive field. In the frequency branch, the
input feature F i−1

tf is first converted to the frequency domain via Fast Fourier
Transform (FFT) [4]. Subsequently, the frequency feature is decomposed into
amplitude and phase components (i.e., Ai−1

tf , Pi−1
tf ), defined as:

Ai−1
tf =

√
R2(FFT(F i−1

tf )) + I2(FFT(F i−1
tf )),

Pi−1
tf = arctan

[
I(FFT(F i−1

tf ))/R(FFT(F i−1
tf ))

]
,

(2)

where R(·) and I(·) represent the real and imaginary parts of the frequency
feature. According to Fourier transform theory [15], each pixel in the Fourier do-
main interacts with all pixels in the spatial domain, enabling image-size receptive
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field and global feature extraction by extracting features from the amplitude and
phase components in the Fourier domain. As depicted in Fig. 1 (a), we employ
two convolutional layers with a residual connection to extract features Ai

tf and
Pi
tf from the two components, respectively. The output F̃ i

tf of the frequency
branch can be obtained via inverse Fourier transform (IFFT). Due to the global
property of the Fourier transform, F̃ i

tf contains global information from the tar-
get modality, which is complementary to the local feature F̃ i

ts.
Similarly, given the input features F i−1

as and F i−1
af for the i-th stage of the

auxiliary modality, the FSFE module extracts local and global features F̃ i
as and

F̃ i
af from the spatial and frequency branches, respectively.

2.2 Cross-Modal Frequency-Spatial Feature Fusion

For multi-contrast MR images, local features (i.e., F̃ i
as and F̃ i

ts) and global fea-
tures (i.e., F̃ i

af and F̃ i
tf ) are extracted by the spatial and frequency branches,

respectively. Given the existence of complementary information across different
modalities, as well as the spatial and frequency branches, there is a pressing need
to design an effective fusion strategy to explore this complementary information.
Toward this goal, we first fuse the multi-modal features for the different branches
separately, and then integrate the spatial and frequency branches to generate a
comprehensive feature representation for the target modality.
Cross-Modal Selective fusion (CMS-fusion): The CMS-fusion module gen-
erates enhanced local and global features by selectively integrating features from
the respective branch in the auxiliary modality. Taking the frequency branch as
an example, the features F̃ i

tf and F̃ i
af are processed by two convolutional layers,

then combined to learn the pixel-wise modality complementary score stf and
saf for each modality:

[stf , saf ] = sigmoid(conv[F̃ i
tf , F̃

i
af ]). (3)

The complementary features from different modalities are fused to generate an
enhanced global feature F̂ i

tf for the target modality:

F̂ i
tf = stf ∗ F̃ i

tf + saf ∗ F̃ i
af . (4)

Similarly, the local features F̃ i
as and F̃ i

ts from the spatial branch are se-
lectively integrated via the CMS-fusion module, producing the enhanced local
feature F̂ i

ts for the target modality. CMS-fusion in the spatial branch enables
the exploration of detailed structural information from the auxiliary modality.
Frequency-Spatial fusion (FS-fusion):

By incorporating complementary information from the auxiliary modality,
the enhanced features F̂ i

tf and F̂ i
ts offer a better representation of global infor-

mation (corresponding to the basic structure and overall appearance) and local
information (such as detailed structures), respectively. Given that global and lo-
cal information are complementary and both are crucial for MRI reconstruction,
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we introduce the FS-fusion module to adaptively merge the global frequency
information and local spatial information.

As shown in Fig. 1 (c), the FS-fusion module employs the cross-attention
mechanism to achieve mutual enhancement of the spatial and frequency branches.
Aiming at enhancing the spatial information by exploring complementary fre-
quency information, F̂ i

ts is used as the query (Q), and F̂ i
tf serves as both the

key (K ) and value (V ). The integration process can be formalized as follows:

F
i

ts = f(softmax
(
F̂ i
tf (F̂

i
ts)

T /
√
d
)
F̂ i
ts) + F̂ i

ts, (5)

where f is the convolution function and F
i

ts is the spatial feature enhanced
by the global frequency information. Similarly, we obtain the enhanced frequency
feature F

i

tf . The enhanced features F
i

ts and F
i

tf are integrated into F i
ts using

pixel-wise selective fusion, as described in Eq. (3) and Eq. (4).

2.3 Loss Function

FSMNet reconstructs target modality image Ispa
tar and Ifre

tar from the spatial and
frequency branch, respectively. The model is supervised by pixel-level loss Lpixel

and frequency-level loss Lfre, defined as:
Lpixel = ||Ispa

tar − Ifull
tar ||1 + ||Ifre

tar − Ifull
tar ||1, (6)

Lfre = ||A(FFT(Ifre
tar ))−A(FFT(Ifull

tar ))||1 + ||P(FFT(Ifre
tar ))−P(FFT(Ifull

tar ))||1, (7)

where Ifull
tar corresponds to the fully-sampled target modality image, serving as

the ground-truth. A(·) and P(·) denote the amplitude and phase components in
the Fourier domain. The total loss is defined as:

L = Lpixel + λ ∗ Lfre, (8)
where λ is the trade-off coefficient and is empirically set as 0.01.

3 Experiments

3.1 Datasets and Implementation Details

Dataset description: We evaluate our method on the BraTS [14] and fastMRI [22]
datasets. For BraTS dataset, we use T1-weighted (T1WI) and T2-weighted
(T2WI) brain MRI volumes, with T1WI supporting T2WI acceleration. We
randomly select 100 patients, sample slices from the 3D volumes, and split the
dataset 3:1 for training and testing. The fastMRI dataset consists of single-coil
proton density-weighted (PDWI) and fat-suppressed proton density-weighted
(FS-PDWI) knee MRI volumes. Following [5], we filter out 227 PDWI and FS-
PDWI pairs for training and 24 pairs for testing, using PDWI as the auxiliary and
FS-PDWI as the target modality. The reconstruction performance is evaluated
under acceleration factors (AF) of 4× and 8× using the Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity Index Measure (SSIM).
Implementation details: We implement FSMNet and all comparison methods
on RTX 3090 GPUs using the PyTorch library [16]. The image resolution is
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Table 1. Quantitative results on the BraTS and fastMRI datasets with dif-
ferent acceleration factors. We report mean±std for the PSNR and SSIM metrics.

BraTS 4× 8×
Method Year PSNR SSIM PSNR SSIM

Zero-filling [1] JMRI’01 30.04+1.51 0.748±0.034 26.58±1.49 0.673±0.036
MDUNet [18] TBME’18 37.94±1.66 0.975±0.006 35.19±1.64 0.960±0.009
MINet [5] MICCAI’21 38.26±1.74 0.976±0.006 35.23±1.72 0.961±0.009
MCCA [10] JBHI’23 38.03±1.68 0.975±0.006 35.37±1.66 0.962±0.009
SwinIR [11] CVPR’21 37.87±1.73 0.974±0.006 34.95±1.72 0.960±0.009
MTrans [6] TMI’22 36.02±1.67 0.962±0.007 34.81±1.57 0.957±0.009
DCAMSR [9] MICCAI’23 38.60±1.75 0.978±0.006 35.99±1.74 0.965±0.009
Ours (FSMNet) - 41.76±1.88 0.986±0.004 38.60±1.85 0.977±0.006

fastMRI 4× 8×
Method Year PSNR SSIM PSNR SSIM

Zero-filling [1] JMRI’01 24.5±1.37 0.442±0.10 22.9±1.25 0.369±0.12
MDUNet [18] TBME’18 28.6±1.00 0.600±0.05 27.9±0.86 0.544±0.05
MINet [5] MICCAI’21 29.4±1.88 0.639±0.06 28.1±1.74 0.563±0.08
MCCA [10] JBHI’23 29.4±1.87 0.637±0.06 28.2±1.75 0.562±0.08
SwinIR [11] CVPR’21 29.4±1.87 0.636±0.06 28.1±1.74 0.560±0.08
MTrans [6] TMI’22 29.0±1.79 0.619±0.06 27.3±1.68 0.526±0.08
DCAMSR [9] MICCAI’23 29.4±1.87 0.637±0.06 28.4±1.79 0.569±0.08
Ours (FSMNet) - 29.7±1.93 0.646±0.07 28.5±1.80 0.572±0.08

240 × 240 and 320 × 320 for the BraTS and fastMRI datasets, respectively.
FSMNet is trained using AdamW optimizer with β1 = 0.9 and β2 = 0.999. The
training process for FSMNet consists of 100k iterations with a batch size of 4.
The learning rate is initially set to 1× 10−4 and decays by a factor of 0.1 every
20k iterations. The comparison methods are implemented following the original
configurations described in their respective papers [18,5,10,11,6,9].

3.2 Experimental Results

Comparison with state-of-the-art methods: We conduct a comprehen-
sive comparison between FSMNet and state-of-the-art MCMR methods on both
datasets. As shown in Table 1, FSMNet consistently outperforms existing MCMR
methods [18,5,10,11,6,9] across various acceleration factors on both the BraTS
and fastMRI datasets.

Specifically, when compared with the current state-of-the-art method (i.e.,
DCAMSR [9]), our method improves the PSNR by 3.16 dB and 2.61 dB under
4× and 8× AF on the BraTS dataset, respectively. We further illustrate the
reconstructed images and error maps of different methods in Fig. 2. For the ex-
ample with 4× AF on the BraTS dataset, FSMNet recovers more image details
and leads to a smaller error map. More examples are provided in the supple-
mentary material. The visualization results align with the improvement in the
PSNR and SSIM metrics shown in Table 1.
Ablation Study: For the T2WI MRI reconstruction on the BraTS dataset
with different AF, we conduct an ablation study to evaluate the contributions of
our proposed FSFE, CMS-fusion, and FS-fusion modules. As shown in Table 2,
compared with the vanilla variant (multi-modal UNet with concat fusion, 1st



8 Qi Chen et al.

Table 2. Ablation study on the BraTS dataset with different AF.

FSFE CMS-fusion FS-fusion 4× 8×
PSNR SSIM PSNR SSIM

37.94±1.66 0.975±0.006 35.19±1.64 0.960±0.009
! 41.05±1.80 0.985±0.004 37.97±1.78 0.974±0.007
! ! 41.39±1.83 0.986±0.004 38.27±1.78 0.975±0.007
! ! ! 41.76±1.88 0.986±0.004 38.60±1.85 0.977±0.006

Fig. 2. Qualitative visualization of the reconstructed images (1st row) and error
maps (2nd row) for different MCMR methods with 4× AF on the BraTS dataset.
Additional qualitative results are provided in the supplementary material.

row), the reconstruction performance significantly improves with the introduc-
tion of the FSFE module (2nd row). Specifically, the PSNR improves by 3.11 dB
and 2.78 dB under 4× and 8× AF, respectively. These results indicate that the
global frequency and local spatial features extracted by the FSFE module can
effectively enhance the feature representation and benefit MRI reconstruction.
As demonstrated in the 3-4 rows of Table 2, we observe performance degrada-
tion when replacing the CMS-fusion and FS-fusion with the simple summation
fusion method. These results suggest that the proposed CMS-fusion and FS-
fusion modules can effectively explore complementary information across dif-
ferent modalities and branches. Moreover, a feature analysis for the FS-fusion
module is provided in the supplementary material.

4 Conclusion

For the accelerated MCMR task, we propose a novel FSMNet to effectively ex-
plore and integrate the global frequency feature and local spatial feature across
different modalities. In our proposed FSFE module, the spatial branch cap-
tures local dependency, while the frequency branch efficiently captures global
dependency and achieves image-size receptive field via Fourier transform. The
CMS-fusion is devised to generate enhanced local and global features by adap-
tively integrating complementary information from the auxiliary modality. The
enhanced local and global features are further integrated via the FS-fusion mod-
ule to produce a comprehensive feature representation for the target modality.



Accelerated MCMR via Frequency and Spatial Mutual Learning 9

Extensive experiments on the BraTS and fastMRI datasets demonstrate the
superiority of FSMNet for the MCMR task under various acceleration factors.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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