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Abstract. Deep learning models based on medical images have made
significant strides in predicting treatment outcomes. However, previous
methods have primarily concentrated on single time-point images, ne-
glecting the temporal dynamics and changes inherent in longitudinal
medical images. Thus, we propose a Transformer-based longitudinal im-
age analysis framework (LOMIA-T) to contrast and fuse latent repre-
sentations from pre- and post-treatment medical images for predicting
treatment response. Specifically, we first design a treatment response-
based contrastive loss to enhance latent representation by discerning
evolutionary processes across various disease stages. Then, we integrate
latent representations from pre- and post-treatment CT images using
a cross-attention mechanism. Considering the redundancy in the dual-
branch output features induced by the cross-attention mechanism, we
propose a clinically interpretable feature fusion strategy to predict treat-
ment response. Experimentally, the proposed framework outperforms
several state-of-the-art longitudinal image analysis methods on an in-
house Esophageal Squamous Cell Carcinoma (ESCC) dataset, encom-
passing 170 pre- and post-treatment contrast-enhanced CT image pairs
from ESCC patients underwent neoadjuvant chemoradiotherapy. Abla-
tion experiments validate the efficacy of the proposed treatment response-
based contrastive loss and feature fusion strategy. The codes will be made
available at https://github.com/syc19074115/LOMIA-T.

Keywords: Longitudinal Medical Images · Treatment Response Pre-
diction · Contrastive Loss · Feature Fusion · Esophageal Cancer.

1 Introduction

The analysis of longitudinal medical images is an important but challenging
problem in the monitoring of tumor progression and the evaluation of treatment
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response [10, 29]. Compared to single time-point medical images, longitudinal
medical images offer more information related to treatment response [4]. For
instance, neoadjuvant chemoradiotherapy (nCRT) followed by surgical resection
is the preferred treatment for locally advanced esophageal squamous cell carci-
noma (ESCC) [21]. For patients who achieved pathological complete response
(pCR) after nCRT, a wait-and-see strategy is more suitable than surgical resec-
tion [7]. Therefore, preoperative prediction of pCR for individual ESCC patients
is highly desirable, as it can assist clinicians in making treatment decisions.

Previous studies have demonstrated using deep learning-based or radiomics-
based methods to analyze contrast-enhanced CT images can preoperatively pre-
dict pCR of ESCC [18]. Nevertheless, the majority of studies primarily concen-
trate on single time-point CT images (pre- or post-treatment), neglecting the
temporal dynamics and alterations which can be elucidated through longitudinal
contrast-enhanced CT images [12]. Several methods for predicting treatment re-
sponse based on longitudinal medical images have been proposed, demonstrating
that disease progression patterns represented by longitudinal data can improve
the performance [11,15]. These works can be primarily categorized into deep fea-
ture contrast (DFC) based methods and deep feature fusion (DFF) based ones.
Both of them usually establish two or more parallel neural networks to represent
longitudinal images. Afterward, the DFC-based methods utilize a similarity func-
tion to quantify the differences among features from longitudinal images [5,22],
which are usually correlated to the treatment response. It is similar to the way
clinicians evaluate tumor treatment response where they typically rely on vi-
sual comparison between pre- and post-treatment CT images. Thus, DFC-based
methods are clinically interpretable, which is crucial for clinical decision-making.
In contrast, the DFF-based methods usually fuse the features from longitudinal
images and then associate the fused feature with treatment response. Compared
with DFC-based methods, DFF-based methods for longitudinal images can pro-
vide a more comprehensive and accurate analysis of longitudinal changes [19,24].
Common feature fusion strategies include concatenation of features with all- or
cross-attention mechanism [1], and their effectiveness have been validated in var-
ious tasks. For example, Tong et al. [23] developed a Dual-input Vision Trans-
former (DiT) model with the all-attention and concatenation strategy to fuse
features from pre- and post-treatment medical images in breast cancer patients.
However, self-attention leads to each output token encompassing features from
every token in the longitudinal images. Concatenating all longitudinal tokens
directly may introduce redundancy into the final feature pool, posing a poten-
tial impact on predictive performance. Disentangled representation learning is
a method reducing the redundancy in fused feature pool with aligning longi-
tudinal data in the time dimension [20] or latent representation dimension [28]
to capture meaningful aspects. For instance, Yue et al. [26] proposed Multi-loss
disentangled representation learning (MLDRL) to highlight differences and align
commonalities among longitudinal images.

In this paper, we introduce LOMIA-T, a novel longitudinal image analysis
framework that combines feature contrast and fusion techniques, through which,
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we can effectively leverage longitudinal medical images for predicting treatment
response. Specifically, we develop a clinically interpretable fusion strategy for lon-
gitudinal medical images and introduce a treatment response-based contrastive
loss function aimed at capturing nuances in disease progression trajectories. Ex-
perimental results on an in-house ESCC dataset from two hospitals demonstrate
that LOMIA-T outperforms other state-of-the-art longitudinal image analysis
methods. Furthermore, LOMIA-T can be transferred for predicting treatment
response in other diseases and can accommodate multiple time-point medical
images with minor modifications.

Fig. 1. Schematic of LOMIA-T. Solid lines represent Tpost and T cross
post which are used in

LOMIA-T, while dashed lines represent Tpre and T cross
pre which are not.(A) Preprocess-

ing workflow; (B) Overall structure of LOMIA-T; (C) Schematic of the T2T module
structure within the Tumor Region Representation Network; (D) Cross-attention in
pre- and post-treatment branch.
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2 Materials and Methods

2.1 CT Imaging and Preprocessing

This study was approved by the Ethics Committee of the Fifth Affiliated Hospital
of Sun Yat-sen University (2021-K62-1) and was conducted in accordance with
the Declaration of Helsinki. Informed consent was waived due to the observa-
tional design of this study and the de-identifed nature of the data. A total of 170
locally advanced ESCC patients who underwent nCRT are obtained from two
hospitals, including 85 patients who achieved pCR, and longitudinal contrast-
enhanced CT images (pre- and post-treatment) for these patients are available.
We randomly divide these patients into a training and a test set at a ration of
4 : 1. We first use nnU-Net [9] to segment tumor region on the pre- and post-
treatment contrast-enhanced CT images automatically. This method achieved a
median Dice similarity coefficient (95 % confidence interval [CI]) value of 0.865
(0.851-0.875) on 580 eligible ESCC patients collected from two institutions. (Fig-
ure 1A) [27]. To guarantee the acquisition of the whole tumor region, we expand
the three-dimensional bounding box of the segmented mask by 4 pixels on the
cross-sectional slices and select 32 consecutive slices as the region of interest
(ROI), fianlly resized the ROI into a fixed size of 32× 48× 48.

2.2 Overall Network Architecture

Fig. 1B illustrates the network architecture of LOMIA-T. It mainly contains
two subnetworks: tumor region representation network and deep features inter-
action network for pre- and post-treatment CT images. We propose a treatment
response-based contrastive loss, enhancing the ability of the tumor region rep-
resentation network to discern feature disparities indicative of treatment effects
between pre- and post-treatment CT scans. Furthermore, a novel deep feature
fusion method is introduced to improve prediction performance further.

Tumor region representation network. The tumor region representation
network is constructed using a token-to-token Vision Transformer (T2T-ViT)
module, and the representation networks for pre- and post-treatment contrast-
enhanced CT images are structurally identical and mutually independent. T2T
module is utilized to transform the input Xpre, Xpost ∈ RD×W×H (D = 32, W =
48, and H = 48 here) into tokens instead of the hard split used in the ViT [25],
and it can retain textural and structural information. Each T2T module involves
three steps: soft split (SS), T2T-Transformer (TT), and re-structurization (RS),
with the step size in the soft split set to (4, 2, 2) and the same scale as the ROI
while re-structurization. The output dimension in the T2T module is halved
using a fully connected layer to reduce the complexity of the representation
network and improve its generalization ability. Figure 1C illus-trates the T2T
structure. The iterative process in T2T module can be formulated as:

Ii+1 = SS (RS (TT (Ii))) , i = 1, 2, 3 (1)
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We apply a soft split at first to split Xpre, Xpost to tokens: I1 = SS (Xi) , i =
pre, post. The final iteration results in the output tokens F t2t

pre, F t2t
post ∈ Rl×c ,

where c represents the number of channels and l signifies the output dimension.
In longitudinal images modelling, spatial and feature misalignments of the

ROI on the longitudinal images always occur [16]. To mitigate spatial misalign-
ment, two learnable matrices PEpre, PEpost ∈ Rl×c are introduced as positional
embedding, respectively. Positional embeddings describe the spatial relationships
in images, while temporal embeddings indicate the temporal changes in images.
Previous methods involve temporal embedding usually introduce a different tem-
poral variable for different tokens [23]. We assume that tokens from the same
time-point image share the same temporal embedding. Here, two learnable tem-
poral embedding variables TEpre, TEpost ∈ R1 are also introduced for F t2t

pre and
F t2t
post, respectively. After spatial and temporal embeddings, tokens from pre- and

post-treatment CT images can be expressed as:

Fi = F t2t
i + PEi + TEi, i = pre, post (2)

Where Fpre, Fpost ∈ Rl×c.
We map TEpre, TEpost ∈ R1 to R1×c using the Python-specific broadcasting

operation and then add them together. Afterward, a seven-layer transformer
encoder is employed to extract high-level imaging features Tpre, Tpost ∈ Rl×c.

Treatment response-based contrastive loss (TCL). Contrastive loss aims
to reduce the distance between similar input pairs and increase that between
dissimilar pairs in the feature space [3, 6]. For all ESCC patients, CT imaging
features will change after nCRT. However, pCR group (with no tumor cells
remained after nCRT) experiences a totally tumor regression, while non-pCR
group experiences a smaller tumor regression or even tumor progression. In the
task of predicting pCR of ESCC patients, the pre- and post-treatment CT images
for patients who achieve pCR are considered as dissimilar pairs, and the pre- and
post-treatment CT images for patients who does not achieve pCR are considered
as similar pairs. Accordingly, we design a treatment respones-based contrastive
loss (TCL) for predicting pCR:

Ltcl = y (Dw)
2
+ (1− y)max(m−Dw , 0)

2 (3)

Where y represents the patient’s treatment response label (pCR = 0, non-pCR
= 1), Dw =∥ Tpre − Tpost ∥2 denotes the Euclidean distance between features
from pre- and post-treatment CT images. For pCR patients, we used the penalty
only if Dw is smaller than m where m equals 0.5.

Deep Feature Fuison Module. The fusion module integrates tumor rep-
resentations from pre- and post-treatment CT images using a cross-attention
mechanism [1], as illustrated in Fig. 1D. More importantly, we consider the re-
dundancy between tokens after the cross-attention mechanism and design skip
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connections based on clinical prior knowledge to reuse low and high level seman-
tic information for predicting pCR.

Specifically, for post-treatment CT branch, it first collects the patch tokens
(Tpre[1 :]) from the pre-treatment CT branch and concatenates its own CLS
tokens (Tpost[0]) to T ′post ∈ Rl×c. The mechanism then performs cross-attention
between T cls

post and T ′post with multiple heads (MCA), where CLS token is the
only query as the information of patch tokens are fused into CLS token. The
output T cls′

post with layer normalization and residual shortcut is defined as follows:

T cls′

post = T cls
post +MCA

(
LN

(
T ′post)) (4)

Afterward, the CLS token and patch tokens from post-treatment CT branch are
fed into a single layer transformer encoder including multi-head self-attention
(MSA) mechanism and feed-forward network (FFN):

T cross
post = FFN

(
MSA

(
T cls′

post ∥ Tpost [1 :]
))

(5)

Where T cross
post ∈ Rl×c.

Considering the redundancy between T cross
pre and T cross

post , their direct concate-
nation may be not the optimal feature fusion strategy. Previous study demon-
strated that the combination of post-treatment CT imaging features and their
interaction features with pre-treatment CT imaging features perform best for
predicting pCR [14], which is consistent with the perception of clinicians. In-
spired by the clinical prior knowledge and our previous finding, we concatenate
T cross
post and Tpost with skip connection for predicting pCR. In this way, LOMIA-T

can better utilize low and high level semantic information for predicting pCR.
Specifically, the first token in T cross

post and Tpost is considered as the CLS token, re-
spectively. These two CLS tokens are then processed through a fully connected
layer with Softmax activation to create a binary classifier, enabling the com-
putation of pCR classification results. In subsequent ablation studies, we also
compare the performance of our fusion strategy with others.

Focal loss [17] is used as loss function to emphasize challenging samples here,
denoted as Lfocal:

Lfocal = −α (1− pt)
γ
log (pt), pt =

{
p, y = 1

1− p, y = 0
(6)

Where, y = 1 represents the non-pCR class, y = 0 represents the pCR class
and p ∈ [0, 1] is the probability for the class with label y = 1. Here, α balances
the importance of pCR/non-pCR examples, and γ represents a tunable focusing
hyperparameter. Additionally, α and γ are set to [1,1] and 2, respectively. The
overall loss L is a weighted combination of Lfocal and Lccl, and w1 is set to 0.01
to ensure that these two losses are maintained at a comparable scale.

L = w1L tcl + (1− w1)Lfocal (7)
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3 Results and Discussion

3.1 Experimental Settings and Evaluation

We train the LOMIA-T model using ten-fold cross-validation for 100 epochs (5
warm-up epochs) on A100 GPU with a batch size of 64. Other setup includes
a cosine linear-rate scheduler with linear warm-up, an initial learning rate of
0.002, a weight decay of 0.05 and a DropKey [13] of 0.4. Moreover, we also apply
the individual discrimination task to pre-train the tumor region representation
net-work for pre- and post-treatment CT images, respectively [8]. Area under
the curve (AUC), accuracy (ACC), sensitivity (SEN), and specicity (SPE) are
used to evaluate the classification performance on the test set.

3.2 Comparison with Existing Methods

When comparing our proposed model LOMIA-T with three other deep learning
methods for longitudinal images, LOMIA-T achieves superior performance in
predicting pCR, as illustrated in Table 1. These methods include the feature
contrast-based method DiT [23] and the feature contrast-based method Siamese-
CNN [2] which implemented using their official codes, and the MLDRL based
on the combination of feature contrast and fusion [26], with the experimental
results sourced from the original study. Specifically, LOMIA-T yields an area
under the curve (AUC) of 0.886, significantly outperforming DiT and Siamese-
CNN (p = 0.009 and 0.006, respectively; DeLong test). It is important to note
that parameters of DiT and Siamese-CNN are meticulously adjusted to optimize
prediction performance using ten-fold cross-validation. Specially, Siamese-CNN
adopts the framework of MoCo v2 [2], with a tumor progression task as pretext,
which is associated with pCR labels. Additionally, to ensure comparability in
model parameters with LOMIA-T, ResNet-18 is utilized as the backbone for
Siamese-CNN. We train Siamese-CNN for 100 epochs, with the TCL as loss
function. The optimal threshold m in the loss function is set to 1.4 using the same
approach as that for LOMIA-T. All selected hyperparameters were optimized
experimentally.

Table 1. Comparison of our model with existing methods for predicting pCR.

Method AUC ACC SEN SPE
DiT [15] 0.727 0.677 0.550 0.857

MLDRL [18] 0.866 0.810 0.684 0.875
Siamese-CNN [28] 0.529 0.588 0.750 0.357
LOMIA-T (Ours) 0.886 0.824 0.800 0.857
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Table 2. Ablation studies on different strategies for expert classification and effective-
ness of TCL loss function on longitudinal ESCC 3DCT dataset.

Strategies AUC ACC SEN SPE
(a) Tpost − T cross

post (LOMIA-T) 0.886 0.824 0.800 0.857
(b) Tpost − T cross

pre 0.879 0.765 0.750 0.786
(c) Tpre − T cross

post 0.850 0.765 0.750 0.786
(d) Tpre − T cross

pre 0.864 0.735 0.750 0.714
(e) T cross

pre − T cross
post 0.843 0.735 0.650 0.857

(f) w/o Deep Feature Fusion module 0.711 0.735 0.850 0.571
(g) Only pre-treatment images 0.546 0.500 0.350 0.714
(h) Only post-treatment images 0.693 0.559 0.450 0.714
(i) w/o TCL 0.821 0.677 0.600 0.786

3.3 Ablation Study

Several ablation experiments are also performed to verify the effectiveness of
deep feature fuison strategy and treatment response-based contrastive loss, and
the results are listed in Table 2. The training strategies and hyperparameters
settings for the ablation studies are the same as LOMIA-T.

The effectiveness of deep feature fusion strategy. For predicting pCR, we
employ a range of strategies to integrate features from pre- and post-treatment
CT images, including the fusion of the features from the pre-/post- treatment af-
ter cross interaction T cross

pre /T cross
post and features from pre-/post-treatment before

cross interaction Tpre/Tpost. Our experiments demonstrate that fusing features
from Tpre or Tpost with those from T cross

pre or T cross
post yield superior performance

compared to the fusion of T cross
pre and T cross

post , the common strategy employed in
previous studies [23]. This may be attributed to the observation that a higher
degree of redundant information exists between tokens T cross

pre and T cross
post after

cross-attention. When comparing the results presented in row (a) and (c), (b) and
(d) in Table 2, we observe that imaging features extracted from post-treatment
CT images exhibit greater predictive value than those from pre-treatment im-
ages. Moreover, in comparison to pCR prediction models based solely on pre-
/post-treatment CT images, models integrating both pre- and post-treatment
CT images consistently outperform them across all fusion strategies. These find-
ings underscore the importance of longitudinal data in enhancing predictive ac-
curacy for pCR.

The effectiveness of treatment response-based contrastive loss. We
remove the TCL and employ only focal loss to train the LOMIA-T. Compared
with the focal loss alone, the AUC and accuracy values are increased by 6.5%
and 14.7%, respectively after adding the TCL. Using TCL forces the tumor
representation network to extract pCR-associated imaging features from pre- and
post-treatment CT images, thereby improving the pCR prediction performance.
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4 Conclusion

In this study, we present a Transformer-based framework for longitudinal image
analysis to predict treatment response of ESCC patients. We propose a clinically
interpretable fusion strategy of longitudinal medical images and experimental re-
sults demonstrate its superiority over direct concatenation strategy. Moreover,
the proposed treatment response-based contrastive loss can facilitate the model
to capture the longitudinal changes of tumor on CT images, leading to a fur-
ther prediction improvement. The LOMIA-T outperforms other state-of-the-art
longitudinal image analysis methods on an in-house ESCC dataset from two hos-
pitals and can be transferred for predicting treatment response in other diseases.
In the future, we will further investigate the generalization of LOMIA-T on other
diseases and the potential of LOMIA-T in predicting treatment response using
multiple time-point medical images. Additionally, we will validate the effective-
ness of LOMIA-T in larger scale longitudinal medical imaging datasets.
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