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Abstract. Parallel imaging (PI) has demonstrated notable efficiency
in accelerating magnetic resonance imaging (MRI) using deep learning
techniques. However, these models often face challenges regarding their
adaptability and robustness across varying data acquisition. In this work,
we introduce a novel joint estimation framework for MR image recon-
struction and multi-channel sensitivity maps utilizing denoising diffusion
models under blind settings, termed Blind Proximal Diffusion Model in
Parallel MRI (BPDM-PMRI). BPDM-PMRI formulates the reconstruc-
tion problem as a non-convex optimization task for simultaneous esti-
mation of MR images and sensitivity maps across multiple channels. We
employ the proximal alternating linearized minimization (PALM) to it-
eratively update the reconstructed MR images and sensitivity maps. Dis-
tinguished from the traditional proximal operators, our diffusion-based
proximal operators provide a more generalizable and stable prior char-
acterization. Once the diffusion model is trained, it can be applied to
various sampling trajectories. Comprehensive experiments conducted on
publicly available MR datasets demonstrate that BPDM-PMRI outper-
forms existing methods in terms of denoising effectiveness and general-
ization capability, while keeping clinically acceptable inference times.

Keywords: Magnetic Resonance Imaging + Parallel MR Imaging - Dif-
fusion Model - Proximal Operator Learning.

1 Introduction

Magnetic Resonance Imaging (MRI) is a widely employed non-invasive technique
for clinical diagnosis. However, its extended acquisition time in k-space poses
limitations such as patient discomfort and motion-related artifacts, restricting
its clinical applications. To address this limitation, parallel imaging (PI) and
compressive sensing (CS) techniques have emerged to accelerate MRI.

PI reduces the required k-space data samples by encoding sensitivity maps
of multiple coils [8], while CS-MRI reconstructs MRI images by exploiting spar-
sity in the k-space through sparse sampling [16]. Combining these techniques,
known as CS-PI, further accelerates MRI [10]. CS-PI methods are classified into
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explicit-calibration, auto-calibration, and calibration-less methods [23]. Explicit-
calibration relies on estimating coil sensitivity maps from pre-scanning calibra-
tion images [18,2,15]. However, misalignment between scans can lead to sensi-
tivity miscalibration errors, degrading image quality. To address this issue, auto-
calibration methods [8,17,22, 9] extract auto-calibration signals (ACS) from the
central region of fully-sampled k-space to alleviate miscalibration errors. How-
ever, their reconstruction accuracy heavily depends on the accuracy of the es-
timated sensitivity profile, especially when only a limited number of ACS lines
are available at high acceleration rates. Calibration-less methods reconstruct
multi-channel k-space data directly without calibration. They synthesize the fi-
nal MR image using the square root of the sum of squares of the reconstructed
images [21, 14, 10]. However, these methods face high computational complexity.
Recently, deep learning has proven effective for solving inverse problems, includ-
ing parallel MR imaging. These methods employ deep neural networks to directly
map under-sampled k-space data to aliasing-free images [25]. Nonetheless, they
ofen lack specific domain knowledge of the CS-PI mechanism. To overcome this
limitation, recent approaches such as incorporating imaging models or data con-
sistency of k-space into the network have been proposed [6,19]. Additionally,
explicit-calibration CS-PI methods such as [11, 1] learn de-aliasing networks or
Fields of Experts (FoE) models through gradient descent procedures, estimat-
ing sensitivity maps via calibration using ESPIRIT [22]. Despite their promising
results and speed, they require separate estimation of coil sensitivity maps. More-
over, Yang et al. [24] proposed an iterative deep learning-based method for CS-PI
to jointly estimate MR images and coil sensitivities, even with high acceleration
factors or fewer ACS lines in k-space.

More recently, unsupervised deep learning methods, particularly generative
models, have shown great potential in learning complex prior distributions and
have advantages in alleviating the limitations of learning flexibility. For instance,
Chung et al. [7] introduced a score-POCS model for solving inverse problems
in imaging by leveraging the learned score function as a prior. However, de-
noising diffusion processes have a tendency to alter the original distribution of
the target image due to the randomness of noise. Consequently, denoising dif-
fusion methods often overlook the consistency of anatomical structures in med-
ical images, resulting in clinically less relevant outcomes. Additionally, current
diffusion-based CS-PI methods primarily focus on MR image denoising without
considering sensitivity maps. In this work, we introduce a novel Blind Proximal
Diffusion Model in Parallel MRI (BPDM-PMRI) for reconstructing MR images

from under-sampled k-space measurements. Our main contributions include:

— We propose a joint optimization approach for blind parallel MRI reconstruc-
tion, which incorporates denoising diffusion probabilistic models for images
and sensitivity maps. To the best of our knowledge, this is the first diffusion-
based model for blind CS-PI.

— We employ the PALM [4] algorithm to solve the blind CS-PI model and sub-
stitute regularizers with off-the-shelf diffusion models, serving as denoising
priors to approximate the global optimal solution.
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/ Image Forward Diffusion

Fig. 1. Schematic diagram of BPDM-PMRI. MR image and sensitivity maps diffusion
models are trained during the forward process. In the Image Update Module (IUM),
sampling from the image diffusion model with the start of the under-sampled MR
images x;, then updating with X;_1 and x;_1 until the final sample x¢. Next, sampling
from the sensitivity maps diffusion model with the start of the estimated sensitivity
maps S¢, then updating with S 1, St 1, and xotfl) until the final sensitivity maps
So and reconstructed MR image x . The under-sampled k-space measurements y;
participates in the iterations of two modules.

— We improve sampling speed significantly by utilizing diffusion models derived
from initial images and sensitivity maps and sampling images and sensitivity
maps within 120 steps, resulting in a remarkable 16.6 x speedup.

— We present a novel alternating optimization scheme between updated im-
ages and sensitivity maps, which provides informative guidance for MR re-
construction and accelerates model convergence. This technique proves to be
highly promising for clinical applications.

2 Methodology

We consider the reconstruction model for blind parallel MR imaging in the fol-
lowing form:

min E (x,8) := H (x,8) + AP(x +WZR (s1) (1)

x)

where

H (x,8) ZHASz@X yill + |X||2 ZIISzIIg- (2)

l 1

The first term of H (x, S) ensures data consistency among reconstructed MR
image x, estimated per-channel sensitivity map s; and its under-sampled data
y; in k-space. The total number of coils is N.. A = MF, F € CV*V denotes
the Fourier transform matrix, and M € CM*¥ is the sampling matrix in k-
space. Minimizing (1) poses a bilinear inverse problem and typically does not
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guarantee the existence of a globally optimal solution. In H (x,S), we include
squared /5 regularization terms of the image x and sensitivity maps s; to trans-
form bi-convex function ||As; ® x —y; ||§ to a strongly bi-convex function, where
« and (3 are corresponding regularization parameters. P(-) and R(-) are two ad-
ditional undetermined regularization functions for characterizing the complex
priors of MR image and the sensitivity maps respectively, further constraining
the solution space. A and ~ are regularization parameters corresponding to the
relative weights of the undetermined regularization terms of MR image and the
sensitivity maps respectively.

2.1 Model Optimization

Solving (1) can be achieved by iteratively updating variables x and S, which is
equivalent to solving the following subproblem:

x*+Y ¢ argmin H (X,S(k)> + AP(x),

3)
sl(kH) € argminH (x(k+1),S> + YR(sy).

Sy

Then H is linearized at points x(*) and sl(k) respectively by the following
equations:

2
xF+1) ¢ argmin <x —xM v, H (x(k)7 S(k))> + % HX —x® H2 + AP(x),

2
sl(kH) € argmin <sl — sl(k), Ve, H <x(k+1), S(k))> + % Hsl — Sz(k)H2 +vR(s1),
st
(4)

where

c

VH (x(k)7 S(k)> = 2 [(sl(k))* OAT (Asl(k) ox® — }’l)} + ax®) )
V. H (X(k+1)’ S(k)) _ (X(k+1))* SAT (Asl(k) o x(k+D) _ yz) n le(k).

~

V<H (x(k), S(k)) and Vg H (x(’““‘l)7 S(k)) are gradients of multivariate func-
tion H with respect to x and s;. (-,-) is an inner product operator. The super-
scripts * and T represent conjugate and conjugate transpose respectively. Thus
the problem of minimizing the sum of a smooth function H with a non-smooth
one P or R can be simplified to the following sub-problems:

2
1 1 A
x(k+1) ¢ argmin§ X — <x<k) — —VxH (x(k), S(k)>) + —P(x),
x « 2 @
1 , ) (6)
D ¢ argmins |[s; — (si® — 1y, H (x(k-&-l)’ S(k)) n lR(s;) .
Sy d 2 d
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Using the definition of proximal operator, we obtain the following PALM algo-
rithm [4] at k-th iteration:

x*+D ¢ proxs p (x(k) - leH (x(k),S(k))> ,
o a

(7)
1
Sl(k+1) € prox p (Sz(k) _ gVSzH (x(’““), S(k))) ,

where I € {1,2,--- ,N,}and k € {0,1,--- , K —1}.80) = {sgo),séo),-u ’SS\(;C)} is

an initial estimation of sensitivity maps. Each of them, e.g., sl(o), can be estimated

based on the initial estimation of I-th coil MR image A "y; and the reconstructed
ATY:

VN (ATy) O(ATy)

the estimation of MR image by SoS. With S(®), based on the PI imaging model,

x() = Zi\/:cl (S§0)>* © (ATYZ)'

MR image using SoS: s;(9) = , where the denominator is

2.2 BPDM-PMRI

It is challenging to efficiently compute the proximal operators corresponding to
the regularizers for the MR image and coil sensitivities, i.e., prox . p and prox 1R
As generative diffusion models provide alternatives for the pro;imal operators,
we substitute the proximal operator prox Ap and Proxs g by two pretrained dif-

fusion probabilistic model, i.e., MR image restoration operator Ry (x,t) and
Ry (S,t).

x(k+) — proxa p (i(k)) £ Ry (}Nc(k)) ;

Sl(k+1) = proxsp (§l(k)) £ Ry (ﬁ(k)> ,

where
£® —x® _p V. H (X(m’ S(k)) ’
57 = 5P — Vg H (x40, 80 ©)
Our proposed BPDM-PMRI employs diffusion proximal operators to sub-
stitute the restoration operators in (8). As shown in Fig. 1, the MR image
reconstruction process comprises the Image Update Module (IUM) and the
Sensitivity Maps Update Module (SMUM). The TUM iteratively generates
MR images using initially estimated sensitivity maps, while the SMUM utilizes
the MR images generated in the IUM to guide sensitivity maps generation and
achieve better MR image. Details of these two modules are as follows.

Image Update Module. To integrate the iterative process with the diffusion
model, the iteration step is indicated in the subscripts throughout the following
process. Given the initial step ¢ = 7} and initialization x; = x(©) of the MR
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image, along with the initialization of sensitivity maps S(?), the MR image x in
the t-th iteration can be updated as follows:

. 1 _
X1 = —= (%t + (1 — a)sa (x4, 1)),

o+

(10)
Xt—1 = 5\(t—l - nxva ()A(t—h S(O)) )

where sg(x¢, 1) is score function of image with score matching methods. a; is re-
lated to the variance of the noise in the image diffusion model. Vo H (fct_l, S(O))
can be calculated by (5).

Sensitivity Maps Update Module. Given the starting step ¢t = T and
xét) corresponding to the final reconstruction xy of the IUM, along with the
initialization S(®) of sensitivity maps, the sensitivity maps s; of the I-th channel
in the t-th iteration is formulated:

~ 1
1= 1—a
Si1 \/d—t(st + (1 — ay)se(Se, 1)),
St—l = St—l — ’/]svslH (X(()t), St_1> , (11)

xétil) = x((f) — NxVxH (x((f), St,l) ,

where s¢(S¢, t) is score function of sensitive maps with score matching methods.
@y is related to the variance of the noise in the sensitivity maps diffusion model.

Vo H (Xét), St,l) can be calculated by (5). Generally, the simultaneous update

of images and sensitivity maps can facilitate rapid convergence of the images,
thereby accelerating the reconstruction speed at this iteration. Finally, we have

the reconstructed MR image xéo).

3 Experiments

Datasets and Experimental Setup We conducted training and testing of
BPDM-PMRI using in-vivo knee MR data from the NYU dataset. The raw data
comprises 15-channel k-space data with a matrix size of 320x320, all acquired
without acceleration. We randomly selected 10 slices from each of 55 subjects
and finally obtained 350 and 100 multi-channel data as training and test sets.
We derived complex-valued ground-truth MR images by synthesizing multichan-
nel images reconstructed from fully-sampled k-space data, utilizing ground-truth
sensitivity maps estimated by ESPIRIT with 40 ACS lines. For experiment, we
employed 1D Cartesian random masks, a practical mode for CS-PI, with accel-
eration factors of Ry = 4, 6, and 8. The quality assessment of the reconstructed
MR images involved measuring the average peak signal-to-noise ratio (PSNR),
normalized root mean square error (nRMSE), and structural similarity index
measure (SSIM) across the whole test set.
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Table 1. Comparison of average reconstruction accuracy at different sampling rates
using PSNR (dB), SSIM, and nRMSE

ACC Ra=4 Ra=6 Ra=8
Method PSNR 1 SSIM 1 nRMSE | PSNR 1 SSIM 1+ nRMSE | PSNR 1 SSIM 1 nRMSE |
Zero-filled 27.4755 0.7235 0.1684 26.7098 0.6897 0.1840 26.0822 0.6711 0.1977

TV 29.7786 0.7061 0.1305 27.9858 0.6531 0.1596 26.7589 0.6209 0.1834
GRAPPA 31.5265 0.7865 0.1072 29.3383 0.7229 0.1369 27.4601 0.6739 0.1691
SPIRIT 32.3176 0.8235 0.0981 29.5908 0.7392 0.1331 27.7948 0.6940 0.1632

AC-LORAKS 32.8592 0.8262 0.0882 30.8367 0.7443 0.1166 28.7277 0.6962 0.1475
Fast-JTV 33.1288 0.8322 0.0895 30.6359 0.7494 0.1188 28.7174 0.7046 0.1476
ENLIVE 33.1474 0.8201 0.0917 30.4342 0.7470 0.1190 28.2173 0.7028 0.1608
LINDBERG 33.9495 0.8516 0.0824 31.0982 0.8203 0.1016 29.0735 0.7480 0.1404

Deep-SLR 34.8320 0.8938 0.0737 31.0806 0.8146 0.1120 29.1012 0.7674 0.1402
DDPM-MRI 31.1729 0.7839 0.1138 29.4611 0.7310 0.1370 28.3047 0.7015 0.1562
BPDM-PMRI 34.3807 0.8915 0.0788 31.3265 0.8210 0.1099 29.2249 0.7741 0.1395

Implementation Details We trained diffusion models for image and sensitivity
maps using ground-truth MR images and sensitivity maps. The Adam optimizer
was employed with a learning rate of 0.0001 and ( values of 0.9 and 0.999. The
default noise schedule parameters were adopted from [12]. The training involved
1000 forward diffusion steps and 100 reverse steps for image inference, as well as
20 reverse steps for sensitivity maps inference, with DDIM [20] sampling mode.
A single NVIDIA Tesla V100s GPU was used for both training and inference.

Performance Evaluation We compared BPDM-PMRI with seven traditional
model-based PI methods, including TV|[3], Fast-JTVI[5], ENLIVE[13], GRAPPAJg],
AC-LORAKSI9], SPIRiT[17], and LINDBERG[23]. TV reconstruction employs
iterative algorithms with total variation regularization. GRAPPA, SPIRiT, and
AC-LORAKS are auto-calibration methods that are commonly used in clini-
cal settings. Fast-JTV, LINDBERG, and ENLIVE are calibration-less methods.
Among them, Fast-JTV and LINDBERG solve reconstruction models with a
joint total variation and a dictionary-based joint sparsity regularization on im-
ages of multi-coils. ENLIVE simultaneously estimates coil profiles and MR im-
ages by solving a nonlinear reconstruction model with predefined regularization
terms. Additionally, we evaluated our method against supervised deep learning
methods, Deep-SLR, and the diffusion model of DDPM-MRI.

Table 1 presents the quantitative accuracy of various reconstruction tech-
niques using 1D Cartesian random masks with acceleration factors R4 of 4,
6, and 8. Compared to model-based approaches like GRAPPA, SPIRIiT, AC-
LORAKS, Fast-JTV, and ENLIVE, our proposed method exhibits superior re-
construction accuracy across all three acceleration factors. Notably, our network
outperforms these traditional methods and DDPM-MRI by an average at least
2 dB. When compared to the supervised deep learning method, Deep-SLR, our
approach achieves the best reconstruction performance at acceleration factors
of R4 = 6 and 8. Our method iteratively updates sensitivity maps and MR
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GT Zero-filling GRAPPA SPIRIT AC-LORAKS

FAST-JTV ENLIVE LINDBERG Deep-SLR

Fig. 2. Examples of reconstructed knee images using an uniform mask at R4 = 6.

images using the diffusion proximal operator, leading to enhanced performance
in an unsupervised manner. In addition to quantitative evaluations, Fig. 2 pro-
vides visual comparisons of reconstructed images under 6x acceleration using a
random mask. Our proposed method produces high-quality images with no no-
ticeable artifacts and richer details. In contrast, the seven traditional methods
exhibit severe artifacts, while the Deep-SLR method appears overly smooth with

limited details and a few artifacts, and DDPM-MRI also introduces additional
Gaussian noise.

Table 2. Ablation Study on the NYU dataset with 4 x, 6 x and 8 x acceleration.

Acceleration 4 x ‘ 6 x ‘ 8 X

Metric PSNR SSIM nRMSE‘PSNR SSIM nRMSE‘PSNR SSIM nRMSE

w/o ITUM 29.82 0.7907 0.1289 | 27.89 0.7239 0.1608 | 26.70 0.6913 0.1841
w/o SMUM 33.42 0.8557 0.0988 | 30.89 0.7904 0.1156 | 28.90 0.7538 0.1446
BPDM-PMRI 34.38 0.891 0.0780 | 31.33 0.8210 0.0944 | 29.23 0.7741 0.1395
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Ablation Study To evaluate the effectiveness of BPDM-PMRI, we replace the
Image Update Module (IUM) and Sensitivity Maps Update Module (SMUM)
as under-sampled MR images z; and the initial estimated sensitive maps S; re-
spectively for comparison. The performance comparison using 1D random masks
at 4x, 6x, and 8x accelerations is presented in Table 2. It is evident that both
modules contribute to enhancing the reconstruction quality. In addition, the
IUM can improve the accuracy of the algorithm to a greater extent.

4 Conclusion

We proposed a novel blind proximal diffusion model for the joint optimization of
image and sensitivity maps in parallel MRI reconstruction. Extensive experimen-
tal results highlight the superior efficiency and generalizability of BPDM-PMRI
in comparison to other competitive methods.
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