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Abstract. Dynamic functional connections (dFCs) have been widely
used for the diagnosis of brain diseases. However, current dynamic brain
network analysis methods ignore the fuzzy information of the brain
network and the uncertainty arising from the inconsistent data qual-
ity of different windows, providing unreliable integration for multiple
windows. In this paper, we propose a dynamic brain network analysis
method based on quality-aware fuzzy min-max neural networks (QFMM-
Net). The individual window of dFCs is treated as a view, and we
define three convolution filters to extract features from the brain net-
work under the multi-view learning framework, thereby obtaining multi-
view evidence for dFCs. We design multi-view fuzzy min-max neural
networks (MFMM) based on fuzzy sets to deal with the fuzzy infor-
mation of the brain network, which takes evidence as input patterns
to generate hyperboxes and serves as the classification layer of each
view. A quality-aware ensemble module is introduced to deal with un-
certainty, which employs D-S theory to directly model the uncertainty
and evaluate the dynamic quality-aware weighting of each view. Exper-
iments on two real schizophrenia datasets demonstrate the effectiveness
and advantages of our proposed method. Our codes are available at
https://github.com/scurrytao/QFMMNet.
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1 Introduction

Dynamic functional connections (dFCs) are inferred from the time series of
resting-state functional MRI (rs-fMRI), capturing the dynamic changes of activ-
ities in brain disease identification [13,15]. Recent studies have demonstrated the
great promise of dFCs in understanding brain diseases by observing the temporal
property changes and analyzing abnormal connections [5,19]. Deep learning has
excelled in discovering complex structures and learning latent features in high-
dimensional data, showcasing the ability to explore intricate relationships and
topological structures within dFCs. Therefore, brain network analysis algorithms
based on deep learning have received growing attention [8, 16,22].

However, current methods ignore the fuzzy information of the brain network
and the uncertainty arising from the inconsistent data quality of different win-
dows. Factors such as head motion, breathing, and heartbeat from the scanned
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volunteers impact the quality of data acquisition during the collection of raw
rs-fMRI data, which leads to the generation of fuzzy information [1, 2]. Recent
studies have concentrated on optimizing the preprocessing process, exhibiting a
limited capability in dealing with fuzzy information, resulting in its widespread
presence in dFCs [3, 4]. In addition, the traditional deep learning methods for
dynamic brain network analysis considered all time windows of dFCs as a uni-
fied entity or treated each time window equally. Actually, the trustworthiness
varies for each window due to the inconsistent data quality across different win-
dows, leading to the uncertainty generated from the ensemble information of
multiple windows [9]. Unfortunately, current methods ignore this uncertainty
arising from the inconsistent data quality, resulting in an inability to evaluate
the trustworthiness of different windows.

In this paper, we propose quality-aware fuzzy min-max neural networks
(QFMMNet) for dynamic brain network analysis, as shown in Figure 1. In the
proposed method, we treat each time window of dFCs as a view and utilize edge-
to-edge (E2E), edge-to-node (E2N), and node-to-graph (N2G) convolution filters
to extract features of multiple views to obtain evidence [11]. The evidence serves
as the input pattern for multi-view fuzzy min-max neural networks (MFMM) to
generate hyperboxes, which output class nodes for different views. Our model
effectively deals with the fuzzy information in individual views of dFCs, bene-
fiting from the advantages of MFMM in addressing uncertainty and fuzziness.
In addition, a quality-aware ensemble module is designed to deal with the un-
certainty from different views with inconsistent data quality by identifying the
trustworthiness of each view. D-S theory is utilized to directly model uncertainty
for multiple views, enabling a more effective assessment of the quality of each
view. The information of multiple views is ensembled using a weighted fusion
strategy for classification at the decision layer of deep multi-view classification.

2 Proposed Method

2.1 Data and Preprocessing

We utilize raw rs-fMRI data from two schizophrenia datasets. The dataset of
Huaxi Hospital (Huaxi) includes 161 patients with schizophrenia and 150 normal
control patients (NC). The Center for Biomedical Research Excellence dataset
(COBRE) includes 53 patients and 67 NCs. Initial rs-fMRI images are corrected
for slice timing, realigned, and normalized to the EPI template. The time-series
data are then band-pass filtered (0.01-0.08 Hz). The resulting volumes comprise
240 time points and are segmented into 90 Regions of Interest (ROIs) based
on the Automated Anatomical Labeling (AAL) atlas. These time-series provide
information about brain activity. The Huaxi dataset retains 9 time windows,
resulting in 9 views, while the COBRE dataset retains 10 views.

For a dynamic brain network dataset {Xn}Nn=1 with N samples, each sample
has V windows. Let A ∈ R|Ω|×|Ω| be the single adjacency matrix of FCs, i.e.,
Ad = {A(1), A(2), · · · , A(V )} is the connection matrix of dFCs, where Ω = 90
is the number of brain network nodes.
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Fig. 1. Evidence is the input pattern of MFMM to obtain the class nodes. The
quality-aware ensemble module connects evidence with Dirichlet distribution to evalu-
ate quality-aware weighting and integrates multiple views with weighted fusion.

2.2 Multi-View Fuzzy Min-Max Neural Networks

We design the MFMM to deal with the fuzzy information of dFCs. The MFMM
utilizes evidence as input patterns to generate fuzzy hyperboxes, obtaining class
nodes under the framework of multi-view learning. To capture multi-view fea-
tures of brain networks and obtain evidence, we introduce the E2E, E2N, and
N2G convolution filters. The details of these filters are as follows:

The E2E extracts edge features from the original adjacency matrix and com-
bines local information weighted to learn edge features. E2E can be defined as

H
(p)
i,j (v) = ReLU(

∑|Ω|

o=1
(rnoA

d
i,o(v) + cnoA

d
o,j(v)) + bp), (1)

where rp ∈ R|Ω| and cp ∈ R|Ω| are the learning weights, and bp is the learning
biases of the p-th filter.

The E2N aggregates edge features into node features. E2N can be defined as

a
(p)
i (v) = ReLU(
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rm,p
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i,o(v) + bp), (2)

where rm,p
o = R|Ω| is the learning weight, and (m, p) represents a pair of input

and output features for each layer.
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The N2G transforms node features into graph features. It reduces the spatial
dimension of the feature map by obtaining a single response from all nodes in
the graph. N2G can be defined as

g(p)(v) = ReLU(
∑M

m=1

∑|Ω|

i=1
wm,p

i ami (v) + bp), (3)

where wm,p
i ∈ R|Ω| is the learning weight.

The E2E, N2N, and N2G convolution filters are utilized to convolve {Xn}Nn=1,
producing a feature map dFC ∈ {{(R64

v )n}Vv=1}Nn=1. The dFC is processed
through fully connected layers, followed by a Softplus activation layer, to ob-
tain evidence e = {ev1, ev2, · · · , evK}Vv=1 of each sample for a K classification task.

Fuzzy sets were introduced to deal with the fuzziness, demonstrating high
efficiency in pattern recognition problems [21]. We design the MFMM to generate
hyperboxes based on fuzzy sets, where the evidence ev from each view serves as
the input pattern. Each hyperbox is represented by a minimum and maximum
point in an x-dimensional space within a unit hypercube Ix. Each hyperbox fuzzy
set is defined as HBv

j = ({Ev
n, BV

v
j , BW

v
j , h((E

v
n, BV

v
j , BW

v
j ))}),∀Ev

n ∈ (Ix)v,
where HBv

j is hyperbox fuzzy set of v-th view, Ev
n = ((ev)n1, (e

v)n2, · · · , (ev)nx)
is the input pattern of v-th view, BV v

j and BW v
j are the minimum and maximum

points of HBv
j of the j-th hyperbox.

The MFMM utilizes the membership function to determine the degree of
match between the sample and the existing hyperboxes when a new training
pattern is provided. The membership function of v-th view is as follows:

HBv
j (E

v
n) =

1
2x

∑x
i=1 [max(0, 1−max(0,min(1, evni −BW v

ji)))
+max(0, 1−max(0,min(1, BV v

ji − evni)))].
(4)

Hyperbox expansion, hyperbox overlap test, and hyperbox contraction are
the main steps of MFMM. The performance may be compromised due to the
overlapping regions of hyperboxes from different classes during hyperbox expan-
sion. A new constraint for multi-view data is introduced to solve this problem:

Maxx(BW
v
ji, (e

v)ni)−Minx(BV
v
ji, (e

v)ni) ≤ Θ. (5)

Each dimension is examined to confirm whether it exceeds the expansion
coefficient Θ in each view, minimizing the overlapping regions of hyperboxes.
The reduction of overlapping regions enhances the clarity of decision boundaries,
thereby dealing with the fuzzy information.

We employ nine cases as hyperbox overlap test rules to identify all overlap-
ping regions of hyperboxes of different classes. The contraction rules are devel-
oped based on the nine cases of the hyperbox overlap test. All cases are examined
to determine a proper adjustment. The hyperbox overlap test rules and the hy-
perbox contraction rules are shown in the supplementary material.

2.3 Quality-Aware Ensemble Module

The quality-aware ensemble module was introduced to deal with the uncertainty
arising from the inconsistent data quality across each view. We model the un-
certainty using the D-S theory and define the dynamic quality-aware weighting
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to evaluate the quality of each view. The MFMM classifier fv(ev) for the v-th
view is ensembled by a weighted fusion strategy.

The D-S theory is employed to model uncertainty. For the K classification
problems, subjective logic [10] assigns an uncertainty mass to each view based
on evidence e = {ev1, ev2, · · · , evK}Vv=1, and assigns a belief mass for each class.
The uncertainty mass values and belief mass values are non-negative. The sum
of an uncertainty mass value and K belief mass values equals 1 in the v-th view:

uv +
∑K

k=1
bvk = 1, (6)

where uv ≥ 0 is uncertainty mass in the v-th view, and bvk ≥ 0 is belief mass [17].
The Dirichlet distribution is a multidimensional probability distribution used

to represent the weight allocation of random variables with multiple categories
[20]. Subjective logic relates evidence ev = [ev1, e

v
2, · · · , evK ] to Dirichlet distribu-

tion parameters αv = [αv
1, α

v
2, · · · · · · , αv

K ] in the v-th view by αv
k = evk + 1.

The formulas for belief mass bvk and uncertainty uv are as follows:

bvk =
evk
Sv

=
αv
k − 1

Sv
, uv =

K

Sv
, (7)

where Sv =
∑K

i=1 (e
v
i + 1) =

∑K
i=1 α

v
i represents the Dirichlet strength.

Definition 1. Dynamic quality-aware weighting is designed to evaluate the trust-
worthiness of each view based on uncertainty uv and belief bvk, defined as

Qv = − V log uv∑V
v=1 u

v
eMax{bv1 ,b

v
2 ,··· ,b

v
K}. (8)

The dynamic quality-aware weighting assigns quality-aware weights to the
classification results for each view. It is worth noting that the weights for each
sample are different, i.e., the weights are dynamically generated.

Definition 1 reveals the pattern that the less the uncertainty mass uv for
the v-th view, the more reliable the classifier fv(ev), resulting in higher quality-
aware weighting Qv. We employ a weighted fusion strategy to integrate the
classification results of each view at the decision level:

f(e) =
∑V

v=1
fv(ev) ·Qv. (9)

For a sample in {Xn}Nn=1 with evidence e = {ev1, ev2, · · · , evK}Vv=1, classification
result of v-th view fv(ev) = (cv1, c

v
2, · · · , cvK) choose the class node with the

highest value as the predicted class, i.e., the prediction result of v-th view can
be expressed as (yp)

v
= Max{cv1, cv2, · · · , cvK}. The final prediction result of the

proposed method for this sample is as follows:

yp = Max

{∑V

v=1
Qvcv1,

∑V

v=1
Qvcv2, · · · ,

∑V

v=1
QvcvK

}
. (10)
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2.4 Network Structure and Training

The cross-entropy loss ℓce = −
∑K

k=1 ynk log(pnk) is the commonly used loss
function in the context of traditional neural network classifiers, where pnk is the
predicted probability of class k for the n-th sample.

For the proposed model, we can derive the Dirichlet distribution parame-
ters αn from the evidence learned for the n-th sample. Parameters αn are then
utilized to generate multinomial opinions denoted as Dir(Pn|αn), where Pn rep-
resents the probability distribution for category assignments on the simplex. We
make modifications to the cross-entropy loss function ℓce:

ℓace(αn) =
∑K

k=1
ynk(ψ(Sn)− ψ(αnk)), (11)

where ψ(·) is the digamma function. The loss function ℓace allows the model
to produce more evidence of the correct class during training. Additionally, we
introduce a KL divergence term to add a prior to the Dirichlet distribution as a
regularization term, aiming to reduce evidence for incorrect classes:

ℓvkl(α
v) = DKL[Dir(P

v|α̃v)||Dir(P v|[1, · · · , 1])], (12)

where α̃v = y + (1 − y) ⊙ αv is the adjustment parameter for the Dirichlet
distribution, preventing the penalization of evidence for the correct class to 0.

For the n-th sample with Dirichlet distribution parameters αn, the optimized
loss function for the v-th view is defined as follows:

ℓvn = ℓace(α
v
n) + λℓvkl(α

v
n), (13)

where λ > 0 is the balancing factor. Overemphasizing KL divergence in the early
stages of training may lead to the loss of crucial information. Thus, we increase
the value for λ steadily. By minimizing the overall loss function

ℓ =
∑N

n=1

∑V

v=1
ℓvn, (14)

all views are ensured to improve the overall opinion.

3 Experiments

3.1 Experimental settings

The classification performance of the proposed model QFMMNet is evaluated by
measuring accuracy (ACC), sensitivity (SEN), specificity (SPE), and F1-score
(F1) via 5-cross validation.

We compared our model with 2 classification algorithms based on hyper-
box, including enhanced fuzzy min-max neural networks (EFMM) [14], and
general fuzzy min-max neural networks (GFMM) [12]. We also compared our
model with 3 deep multi-view algorithms, including a multi-omics integration-
based biomedical data classifier (MORONET) [18], trusted multi-view classifica-
tion (TMC) [7], and a dynamic fusion-based trustworthy multi-modal classifier
(MMD) [6]. Furthermore, we conducted ablation studies using only MFMM (No-
QAE) and quality-aware ensemble module (NoMFMM), respectively.
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Table 1. Performance Comparison of the Proposed and Competing Methods.

Datasets Methods ACC(%) SEN(%) SPE(%) F1(%)

Huaxi

EFMM 80.71 ± 1.03 78.51 ± 2.76 82.61 ± 2.71 79.48 ± 2.84
GFMM 82.32 ± 1.02 80.33 ± 1.28 84.26 ± 1.34 82.12 ± 1.55
MORONET 73.39 ± 1.42 64.53 ± 3.38 81.48 ± 3.55 70.30 ± 2.05
TMC 83.93 ± 2.63 83.05 ± 3.31 84.43 ± 3.38 83.06 ± 3.71
MMD 83.66 ± 2.31 82.71 ± 2.63 84.81 ± 4.04 83.38 ± 2.88
NoQAE 82.63 ± 1.26 80.96 ± 4.47 83.65 ± 3.69 81.54 ± 3.14
NoMFMM 83.60 ± 2.15 82.25 ± 4.29 84.36 ± 2.90 82.56 ± 3.90
Ours 87.14 ± 1.40 88.60 ± 1.97 85.61 ± 2.80 88.03 ± 1.27

COBRE

EFMM 82.50 ± 1.66 85.14 ± 4.46 79.00 ± 2.59 84.12 ± 2.84
GFMM 83.33 ± 2.63 87.55 ± 4.93 76.39 ± 6.73 85.07 ± 3.60
MORONET 81.67 ± 2.04 88.68 ± 3.11 71.97 ± 2.79 84.86 ± 2.04
TMC 83.33 ± 2.63 89.52 ± 4.04 75.00 ± 3.52 85.69 ± 3.04
MMD 83.81 ± 1.91 88.75 ± 3.50 77.38 ± 1.23 85.74 ± 2.77
NoQAE 83.81 ± 0.95 87.05 ± 4.58 79.16 ± 4.36 85.00 ± 2.74
NoMFMM 82.50 ± 3.21 88.68 ± 3.94 73.26 ± 7.62 85.66 ± 3.56
Ours 87.50 ± 2.64 91.01 ± 3.88 82.17 ± 4.43 89.07 ± 3.30

3.2 Results

Experimental results are listed in Table 1, indicating that our model consistently
outperforms others across all metrics and exhibits superior classification perfor-
mance compared to other methods. For instance, the ACC reached 87.14% and
87.50% on Huaxi and COBRE, showing significant improvement. The ablation
studies proved the effectiveness of MFMM and quality-aware ensemble module.

Fig. 2. Classification results of MFMM with high (a) and low (b) quality. The size of
the points (c) is associated with the average dynamic quality-aware weight Qv of all
samples, and the larger points correspond to higher quality, and vice versa.
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We utilized ACC and F1 as evaluation metrics to verify the effectiveness of
our model in dealing with fuzzy information and uncertainty. Figure 2 illustrates
the phenomenon wherein points closer to the upper-right corner indicate better
classification results. The phenomenon proves that our model can identify the
quality of views and effectively ensemble multiple views, thereby enhancing the
trustworthiness of classification.

Fig. 3. The first row shows the discriminative connections, and the second row illus-
trates the map of the brain regions corresponding to the strongest connections.

3.3 Maps of Discriminative Connections

Our proposed model can identify discriminative connections based on backprop-
agated gradient information. As shown in Figure 3, all views have captured
discriminative brain regions associated with the disease (e.g., ITG.L and ORB-
sup.L). Furthermore, high-quality views predominantly involve brain regions in
the frontal lobe, which is closely related to schizophrenia. While a more dispersed
pattern is observed in low-quality views, affecting the decision.

4 Conclusion
We propose a novel dynamic brain network analysis method based on quality-
aware fuzzy min-max neural networks (QFMMNet). Our model employs the
multi-view fuzzy min-max neural networks (MFMM) based on fuzzy sets to deal
with the fuzzy information of dFCs. A quality-aware ensemble module is designed
to deal with the uncertainty arising from the inconsistent data quality of different
windows, improving the trustworthiness of the decision. Experimental results on
Huaxi and COBRE datasets demonstrate the efficacy of our method.
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