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Abstract. Structural Magnetic Resonance Imaging (sMRI) is a non-
invasive technique to get a snapshot of the brain for diagnosing Alzheimer’s
disease. Existing works have used 3D brain images to train deep learning
models for automated diagnosis, but these models are prone to exploit
shortcut patterns that might not have clinical relevance. We propose an
Anatomy-Aware Gating Network (AAGN) which explicitly extracts fea-
tures from various anatomical regions using an anatomy-aware squeeze-
and-excite operation. By conditioning on the anatomy-aware features,
AAGN dynamically selects the regions where atrophy is most discrim-
inative. Once trained, we can interpret the regions selected by AAGN
as explicit explanations for a given prediction. Our experiments show
that AAGN selects regions well-aligned with medical literature and out-
performs various convolutional and attention architectures. The code is
available at https://github.com/hongcha0/aagn.

Keywords: Alzheimer’s disease · Structural Magnetic Resonance Imag-
ing (MRI) · Explainable AI (XAI) · Deep Learning.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by the ac-
cumulation of amyloid plaques and neurofibrillary tangles in the brain. Research
has shown that changes in the brain occur years before any signs of cognitive
decline [8]. Structural Magnetic Resonance Imaging (sMRI) is a non-invasive
technique to get a snapshot of the brain structure for analysis.

Machine learning methods for classifying sMRI scans process the data at
different levels of granularity. Voxel Based Morphometry [1] processes the data
at the voxel level, while Region of Interest (ROI) methods extract high-level
information like shape and volume from key brain regions [25]. There is a trade-
off between global (general patterns) and local information (fine-grained differ-
ences). Patch-based methods try to achieve a balance between local and global
features by processing the data in small patches. They typically involve training
individual classifiers on the patches or employing an exemplar-based approach

https://github.com/hongcha0/aagn
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that compares patch intensities [5,12]. Deep learning methods, like Convolu-
tional Neural Networks (CNNs), manage the tradeoff between the global and
local information through a data-driven approach.

While CNNs can effectively process whole sMRI scans, they may fail to cap-
ture essential medical knowledge and rely on trivial or shortcut patterns [10,38].
The translational invariance of CNNs makes them ideal for image recognition
tasks where spatial location is not critical. In contrast, AD-related atrophy in
sMRI images is usually region specific (e.g., medial temporal lobe). Atrophy
in other regions may be due to natural aging and cannot provide a definitive
diagnosis. One solution is attention models that can focus on specific parts of
the sMRI. The seminal work on Squeeze-and-Excitation Network (SENet) [14]
models the cross-channel relationship to assign importance to each channel of
the feature map. Subsequently, SENet was adapted for medical imaging tasks by
introducing concepts like spatial excitation [31] to encode positional importance.
Recent works [21,40] use Vision Transformers (ViTs) for AD diagnosis by em-
ploying self-attention to learn long-range dependencies between image patches.

An inductive bias that enables the network to reason about features at
an anatomy-specific level will improve explainability and performance. Prior
works [24,23] have tried to include knowledge about brain anatomy into deep
learning models. Liu et al. [24] used a multivariate statistical test to identify
important voxels as anatomical landmarks and extracted patches from the land-
marks to train landmark-specific CNNs. However, the feature selection step op-
erates independently of model training and is not trainable end-to-end.

We propose an Anatomy-Aware Gating Network (AAGN) that integrates
anatomy information in a fully differentiable manner. AAGN uses an anatomy-
aware squeeze-and-excite operation to extract features from each ROI in the
brain. These features are then used in a Multiple-instance learning (MIL) frame-
work [4]. Similar to how clinicians target specific areas in sMRI scans, AAGN
selectively focuses on relevant ROI instances. Ilse et al. [16] proposed a selec-
tion mechanism for MIL based on self-attention to assign importance scores to
instances in the bag. A softmax function is used to normalize the scores, which
explicitly forces the model to focus on a single instance. In contrast, our proposed
AAGN models each ROI’s importance independently as a Bernoulli distribution
and has the flexibility to use more than one ROI.

In summary, our key contributions are as follows:

– We propose AAGN, which consists of (1) an anatomy-aware squeeze-and-
excite operation to extract enhanced ROI features for MIL, and (2) a gating
network with a fully differentiable feature selection mechanism to identify
relevant ROIs. AAGN improves diagnostic accuracy and effectively adapts
to different task difficulties.

– AAGN provides interpretable diagnosis that is consistent with medical litera-
ture, enhancing its reliability and transparency for clinical use. Additionally,
we show that AAGN’s knowledge of brain anatomy is a strong inductive bias
for better data-efficiency during training.
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Fig. 1: Overview of AAGN. An anatomy-aware squeeze-and-excite operation ex-
tracts features from the CNN feature map for each ROI. The ROI feature embed-
dings are concatenated to form a context vector representing the overall brain
state. The Anatomy Gating Network uses this context vector to dynamically de-
termine which regions are relevant. A permutation-invariant classifier is trained
on the selected regions and provides feedback on which ROIs to select.

2 Methodology

The classification pipeline is broken into a two-stage process: (1) finding a set of
important ROIs and (2) using the ROIs to predict the disease state. More con-
cretely, given a labeled dataset D = {xi, yi}Ni=1 of sMRI images, we want to find
for each xi a set of discriminative regions Si = {s1, s2, ..., sm} and |Si| ≤ k where
k is the number of brain regions. Si can be obtained from expert annotation,
but in our work we assume such information is unavailable. Instead, Si is chosen
to maximize the likelihood of D. For the disease state prediction, Si is classified
using a permutation invariant classifier (e.g., {s1, s2, s3} and {s2, s1, s3} produce
the same output). An overview of the method can be found in Fig. 1.

2.1 Construction of ROI Instances for MIL

Atlas-guided segmentation [15] treats the segmentation of brain ROIs as an im-
age registration task, where we try to find spatial correspondence between an
image and brain atlas (single or multiple). For simplicity, we use a single atlas
approach with anatomical parcellation obtained from the Harvard Oxford At-
las [6]. All sMRI are registered to the atlas using the deformable transformation
method Symmetric Normalization (SyN) [2]. The ground truth mask of all ROIs
is represented as a binary matrix M ∈ Rk×d, where k is the number of ROIs
and d is the number of voxels in the atlas.
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2.2 Anatomy-Aware Feature Extraction

A shared CNN backbone, fθCNN
, without downsampling layers, is used to extract

a feature map spatially aligned with the brain atlas. Each voxel in the feature
map has an increased receptive field, capturing information from a neighbor-
hood to account for inaccuracies in registration. However, this may lead to some
feature leakage across regions. In future work, we will explore other feature ex-
traction techniques, such as slice-wise extraction [36].

To extract features for each region sk, we adapt Squeeze-and-Excitation [14]
to be anatomy aware. The squeeze operation aggregates channel features by
using global pooling, which treats all pixels equally. To extract anatomy-specific
information, we use region masks during pooling. The squeezed channel features
sck also serve as the feature map for each region:

sck = M [k]× fθCNN
(xi)/

d∑
i=1

M [k, i] , (1)

For the excitation operation, we apply an MLP with parameters θkEX followed by
a Sigmoid activation to obtain a relevance score for recalibrating each channel.
Lastly, we use an MLP with parameters θkMLP to learn region specific features
and obtain the enhanced feature embedding for each region:

ϕk(sk) = fθk
MLP

(fθk
EX

(sck) · sck) . (2)

2.3 Anatomy Gating Network

The selection of an ROI can be modeled as a Bernoulli random variable. We use
an MLP with parameters θAGN to model this distribution. The input to the MLP
is a context vector representing the overall brain state, obtained by averaging and
concatenating the ROI embeddings. The output αk is the unnormalized score
for ROI importance. The discrete decision zk of selecting a region can be seen as
taking a sample from the Bernoulli distribution. Since the sampling process is
non-differentiable, previous works have used reinforcement learning or pathwise
derivative estimator to obtain estimates of ∇θAGN

Ezk∼pθAGN
(zk)[f(zk; θAGN )]. In

our work, we use a pathwise derivative estimator approach known as the Gumbel-
Softmax trick [18,26]. Specifically, we use the binary version of Gumbel-Softmax:

zk = sigmoid(
αk + g1 − g2

τ
) =

exp ((logαk + g1) /τ)

exp ((logαk + g1) /τ) + exp ((g2) /τ)
, (3)

where g1 and g2 are i.i.d samples drawn from the Gumbel distribution and
τ is a hyperparameter. Lower τ values more closely approximate the categorical
distribution but increases the variance of the gradients. Given that zk is a real
value approximation of a discrete random variable, it cannot be directly used for
selecting regions. To binarize zk while allowing gradient flow, we use the straight
through estimator (STE) [3]:
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STE(zk) =

{
1 if zk > 0.5,
0 otherwise, and ∇STEzk = 1 . (4)

By setting the threshold value for zk at 0.5, we do not encode any prior knowledge
on which regions to select. Note that we can also set different threshold values
for each region to bias the model to select medically relevant regions.

2.4 Set Prediction

For the final disease state prediction, we adopt the approach proposed in [39],
which uses commutative summation to achieve permutation invariance. The em-
bedding of the selected regions Si are summed and fed into a classifier with
parameters θCLF for prediction:

ŷ = fθCLF

(
K∑

k=1

zk · ϕk(sk)

)
. (5)

A Cross-entropy loss is used to maximize the likelihood of the prediction ŷ
with respect to the ground truth labels. The parameters of AAGN, θAAGN =
(ϕ1, ϕ2, ..., ϕk, θAGN ) are updated jointly with the classifier:

L(θCLF , θAAGN ) = −Ex,y∼p̂D y log fθCLF
(Si) . (6)

3 Experiments

3.1 Dataset and Pre-processing

We use the 1.5T T1-weighted scans from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) [17]. Each scan was acquired during the baseline visit and has
a clinical diagnosis of AD, progressive mild cognitive impairment (pMCI), stable
mild cognitive impairment (sMCI), or cognitively normal (CN). pMCI subjects
are those who transition to AD within the subsequent 36 months. The subject
demographic and data pre-processing pipeline can be found in supplementary.

3.2 Baselines

Convolutional models: State of the art convolutional neural networks like 3D
CNN [7,37] and ResNet [20] have been used for AD diagnosis.

Attention models: Squeeze-and-Excitation Network (SENet) [14] models channel-
wise attention. SENet was later adapted [31] to incorporate: (1) spatial attention
(sSENet) (2) both spatial and channel attention (scSENet). Recent works use
Vision Transformers (ViTs), which employ self-attention to learn inter-patch de-
pendencies. Trans-ResNet [21] augments ViT with patch features extracted by
spatial convolution. GF-Net [40] improves ViT’s ability to extract global features
by learning filters in the frequency domain.
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Weakly-supervised Attention models: Attention maps in models can be
guided with weak supervision. Attention Gated Network (Attn Gated Network) [33]
uses features from the last convolutional layer to provide global context to earlier
layers. MWAN [22] uses a multitask approach by adding a classification head on
the attention map to predict the coarse-grained subject-level label.

Deep MIL: Attention-based DMIL (Attn-based DMIL) [16] uses self-attention
to weigh the importance of different patches extracted from the image.

3.3 Implementation details

For a fair comparison, we standardize the backbone architecture for all baselines
as the 3D CNN (excl. ResNet and DenseNet). The 3D CNN has 6 convolutional
blocks. Each block contains a 3 × 3 × 3 convolution kernel with 64 channels,
Instance Normalization, ReLU activation, and 2 × 2 × 2 Max pooling. Baseline
specific modifications are then added to the backbone. For example, SENet has
a Squeeze-and-Excitation MLP for modeling channel relationships. For AAGN,
we set τ = 1 and carry out experiments using soft (i.e., zk is continuous) and
hard (i.e., zk is binary) variants. All models are trained with batch size 8 and
learning rate 1e-4 for 50 epochs using the Adam optimizer. Data augmentation
in the form of random flipping and Gaussian smoothing is applied.

3.4 Evaluation Metrics

We conduct experiments for 2 classification tasks: (1) AD vs CN (2) pMCI vs
sMCI. Following [37], the evaluation metric used is Balanced accuracy, which
is the unbiased mean of sensitivity and specificity (i.e., sensitivity + specificity

2 ).
For each experiment, we carry out 5-fold cross-validation and report the average
balanced accuracy and AUC on the test set across all folds.

4 Results and discussion

4.1 Comparison of performance

Table 1 shows that AAGN outperforms all baselines in both the AD vs CN
and the more challenging pMCI vs sMCI task. Notably, AAGN outperforms
both attention and weakly-supervised attention models. This shows the effec-
tiveness of our anatomy-aware squeeze-and-excite operation over self-attention
ViTs (e.g., Trans-ResNet, GF-Net) and channel attention CNNs (e.g., scSENet)
in extracting disease-specific patterns. Attention-based DMIL, despite being a
MIL approach like AAGN, performs poorly, possibly due to the use of arbitrary
patches instead of brain regions as instances (further analysis in supplementary).
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Table 1: Comparison of performance for baselines and prior works. The best
result is in bold while the second best is underlined.

Method AD vs CN pMCI vs sMCI

Bal. Acc (%) AUC (%) Bal. Acc (%) AUC (%)
Coupe, 2012 [5] 89.5 − 71.0 −
Tong, 2014 [35] 88.8 − 69.8 −
Moradi, 2015 [27] − − 70.2 76.6
Liu, 2018 [24] 90.8 95.9 62.3 77.6
Shmulev, 2018 [34] − − 67.5 73.0
Lian, 2020 [23] 89.5 95.1 69.0 78.1
Nguyen, 2022 [29] 90.3 − − −
Guan, 2023 [11] − − 73.0 75.7

3D CNN 88.4± 1.7 94.7± 2.0 69.3± 3.2 76.3± 3.8
3D ResNet-18 88.3± 1.8 94.8± 1.6 65.7± 3.4 74.5± 4.1
3D DenseNet-121 85.3± 3.2 93.6± 1.6 70.4± 3.6 77.2± 3.8
3D SENet 89.2± 3.0 95.0± 1.5 68.9± 4.4 75.9± 4.7
3D sSENet 88.9± 2.3 94.2± 2.2 66.7± 3.6 73.8± 2.0
3D scSENet 89.1± 2.2 94.9± 2.0 69.6± 4.6 75.3± 3.1
Attn Gated Network 87.9± 1.7 94.1± 1.5 67.8± 4.8 74.8± 4.9
Trans-ResNet 87.3± 3.7 93.1± 2.0 66.3± 4.6 72.5± 5.9
GF-Net 88.4± 1.4 93.9± 1.5 67.8± 3.0 72.9± 5.4
MWAN 88.8± 2.9 94.2± 2.3 67.9± 3.2 75.5± 4.3
Attn-based DMIL 88.0± 3.1 94.0± 1.9 65.8± 2.5 74.5± 4.6

AAGN (Soft) 90.1± 2.0 94.7± 1.5 74.8± 4.8 81.3± 3.2
AAGN (Hard) 90.3± 2.8 95.1± 1.4 73.5± 4.4 81.3± 3.7

4.2 Model analysis

To test the inductive bias of using anatomy information, we compare the model
features at random initialization [9]. AAGN is able to achieve distinct separation
of the AD and CN samples even without training (Fig. 2).

The ROI selection behaviour of AAGN during training is shown in Fig. 3.
The x-axis is the index for each ROI (refer supplementary) and the y-axis is the
training epoch. We can see that the training process is stable and converges to
a fixed set of ROIs (i.e., column gets warmer in color along the y-axis).

AAGN is able to adapt to different tasks complexity. It selects more regions
for AD vs CN compared to pMCI vs sMCI (i.e., more columns with warm color).
This is because AD brains are significantly more atrophied than healthy brains,
which means a model can look at almost any region of the brain to discriminate
the two. In contrast, for pMCI vs sMCI, atrophy differences are less obvious and
AAGN needs to be more careful in its selection. AAGN thus takes a longer time
to explore and converge to a set of useful ROIs for pMCI vs sMCI (i.e., warm
colors only appear around epoch 25). Such behaviour is ideal, as we want to
avoid premature selection of suboptimal ROIs.
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Fig. 2: t-SNE plots at random initial-
ization without training. Best viewed in
color and zoomed in.
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Fig. 3: ROI selection during training.
Best viewed in color and zoomed in.

We conduct analysis on the top regions selected by AAGN as shown in Tables
2 and 3. The regions picked like the Amygdala [30], Hippocampus [28], Parahip-
pocampal [13], and Inferior Temporal Gyrus [32] are of medical relevance for
AD. An interesting region selected is the Thalamus, which is seen as a potential
research area for early-stage AD [19].

To assess data efficiency, we vary the amount of training data available and
observe AAGN performs the best across all settings (Fig. 4).

Table 2: Top 5 ROI (AD vs CN)
Name Probability

(zK)

Amygdala 0.998
Hippocampus 0.998
Parahippocampal Gyrus (post.) 0.998
Inferior Temporal Gyrus (post.) 0.992
Thalamus 0.985

Table 3: Top 5 ROI (pMCI vs sMCI)
Name Probability

(zK)

Parahippocampal Gyrus (post.) 0.975
Amygdala 0.954
Parahippocampal Gyrus (ant.) 0.927
Hippocampus 0.902
Inferior Temporal Gyrus (post.) 0.867
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Fig. 4: Comparison of model’s data-efficiency. Best viewed zoomed in.
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5 Conclusion

AAGN is an explainable model that outperforms prior works on the clinically
significant task of identifying prodromal AD subjects. It provides explicit expla-
nations of which brain regions are important, enhancing transparency and aiding
clinicians in identifying regions for further examination. AAGN’s feature selec-
tion mechanism adapts to task difficulty and converges to ROIs well-aligned with
medical literature. Additionally, AAGN’s understanding of brain anatomy serves
as a strong inductive bias, making it more data-efficient than other methods.
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