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Abstract. Cortical parcellation delineates the cerebral cortex into dis-
tinct regions based on anatomical and/or functional criteria, a process
crucial for neuroscientific research and clinical applications. Conventional
methods for cortical parcellation involve spherical mapping and complex
feature computation, which are time-consuming and prone to error. Re-
cent geometric learning approaches offer some improvements but may
still depend on spherical mapping and could be sensitive to mesh varia-
tions. In this work, we present Cortex-Diffusion, a fully automatic frame-
work for cortical parcellation on native cortical surfaces without spherical
mapping or morphological feature extraction. Leveraging the Diffusion-
Net as its backbone, Cortex-Diffusion integrates a newly designed module
for full-band spectral-accelerated spatial diffusion learning to adaptively
aggregate information across highly convoluted meshes, allowing high-
resolution geometric representation and accurate vertex-wise delineation.
Using only raw 3D vertex coordinates, the model is compact, with merely
0.49 MB of learnable parameters. Extensive experiments on adult and
infant datasets demonstrates that Cortex-Diffusion achieves superior ac-
curacy and robustness in cortical parcellation. Our code is available at
https://github.com/ladderlab-xjtu/CortexDiffusion.

Keywords: Cortical surface parcellation · Geometric deep learning ·
Learnable spatial diffusion · Full-band spectral acceleration.

1 Introduction
Cortical parcellation of the cerebral cortex entails segregating the cortical sur-
face into distinct regions or parcels, based on information such as anatomi-
cal/functional characteristics. This segmentation process is critical across various
fields, especially neuroscience, neurology, and psychology. Reliable and accurate
parcellation serves as a fundamental prerequisite for exploring the anatomical
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and functional organization of the brain, facilitating surgical planning, and en-
hancing the understanding of the effects of neurological disorders.

In practice, multiple computational tools are publicly available for neuroimage-
based cerebral cortex analyses [3,6,14,20,17]. After the reconstruction of the mesh
surface for individual hemispheres, standard software packages usually execute
parcellation in three steps. Initially, a hemisphere characterized by its intricate
and highly convoluted form is expanded and projected onto a spherical shape.
Subsequently, this sphere undergoes a non-linear alignment with an atlas, in-
formed by various morphological characteristics. The final parcellation derives
from adjusting the atlas’s pre-defined parcellation maps to the original surface,
utilizing the transformation field generated in the prior step. Despite demonstrat-
ing commendable outcomes, two principal challenges exist: 1) The involvement
of multiple mapping and registration phases may lead to the introduction of
unnecessary errors; 2) The process of spherical mapping and registration, along
with the computation of cortical features, is notably time-intensive, typically
requiring about 10 minutes per hemisphere on the latest PC.

Some geometric learning-based methods have been proposed to improve the
efficiency in parcellation, e.g., Spherical U-Net [19] and SPHARM-Net [7]. These
methods learn feature embeddings on the spherical surface, eliminating the ne-
cessity for registration. Besides, techniques from the computer graphics com-
munity, e.g., SubdivNet [9] and MeshCNN [8], demonstrate the capability to
effectively learn on native surfaces without the need for converting formats, sug-
gesting their potential applicability to cortical surface parcellation tasks. Never-
theless, these approaches often still require the explicit calculation of morpho-
logical features and/or the use of spherical mapping. Meanwhile, most of them
tend to be susceptible to variations in mesh types and resolutions, experiencing
notable performance degradations across varying situations.

In this paper, we introduce a novel framework for the task of cortical par-
cellation directly on native surfaces, eliminating the need for spherical mapping
and morphological feature quantification. Our method employs DiffusionNet [16]
as its backbone, incorporating a newly designed module capable of learning full-
band spectral-accelerated spatial diffusion for adaptive information aggregation
on intricate and highly convoluted meshes. This module is adept at capturing
high-resolution, detailed geometric information necessary for accurately distin-
guishing between various cortical regions on a vertex-by-vertex basis. Termed
Cortex-Diffusion, our approach relies solely on the raw 3D coordinates of ver-
tices as input, resulting in an efficient model that requires only 0.49 MB of
learnable parameters. Experiments on both adult and infant datasets show that
Cortex-Diffusion consistently achieved leading performance in cortical parcella-
tion, demonstrating exceptional accuracy and stability.

2 Cortex-Diffusion

2.1 Architecture

In this work, we introduce an advanced learning-based method, referred to as
Cortex-Diffusion, designed for the precise parcellation of high-resolution cor-
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Fig. 1. The schematic diagram of our Cortex-Diffusion for cortical surface parcellation.

tical surface in individual subjects (i.e., within their native space). Cortex-
Diffusion integrates the pioneering DiffusionNet [16] as its backbone to establish
a lightweight geometric deep network, characterized by a minimalistic design
that requires only a small number of learnable parameters. It processes the raw
vertical coordinates of a meshed cortical surface, utilizing these inputs to hi-
erarchically extract fine-grained geometric representations, enabling the accu-
rate assignment of each vertex to its respective parcel. A notable advantage of
our method is its high efficiency, obviating the need for the time-intensive pro-
cesses of spherical mapping, registration, and attribute quantification. As the
schematic diagram shown in Fig. 1, the architecture of Cortex-Diffusion is com-
pact, which only contains four cascaded FB-Diffusion blocks. In each block, there
are three fundamental modules, including 1) a vertex-wise multi-layer percep-
tron (MLP) shared across vertices for nonlinear feature mapping, 2) a full-band
spectral-accelerated spatial diffusion (FB-SASD) module for channel-wise feature
propagation across adaptively identified geodesic neighborhood, and 3) a spatial
gradient (SG) operation that learns anisotropic feature extraction.

Specifically, the MLP module in each FB-Diffusion block consists of three
vertex-wise linear layers, where each of the first two is followed by batch nor-
malization (BN), rectified linear unit (ReLU) activation, and dropout.

The SG module is implemented the same as that in the original DiffusionNet.
Let S be a specific mesh with totally V vertices, and its input feature matrix
for a particular SG module is U ∈ RV×N , where N denotes the number of
feature channels. The SG module first quantifies the spatial gradients of U per
channel according to the specific topology of S, based on which an N × N
matrix A is learned to scale and rotate U across channels for directional feature
enhancement along the surface of S. More specifically, the channel-wise feature
gradients (say Z ∈ CV×N ) are determined by Z = GU, where G ∈ CV×V

is a mesh-specific spatial gradient matrix that stores the 2D gradient vectors
(i.e., complex numbers here to facilitate following calculations) quantified in the
tangent plane for each vertex of S. Based on Z, SG finally updated the input
feature tensor as

U′ = tanh(Re(Z ⊙ ZA)), (1)
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where Z is the conjugate of Z, ⊙ denotes the Hadamard product, Re(·) returns
the real part of a complex tensor, and tanh(·) is the element-wise tanh activation.
Notably, such an SG module only has one learnable part, i.e., matrix A.

The most important technical contribution of our Cortex-Diffusion compared
with the original DiffusionNet is on the design of the FB-SASD module for more
adaptive local information aggregation on cortical surfaces with highly complex
shapes. We present these details in the subsequent subsection (i.e, Sec. 2.2).

2.2 Learnable Full-Band Spectral-Accelerated Spatial Diffusion
In the discretized setting of triangle meshes, diffusing information over a surface
S can be modeled by the discretization of a continuous heat function. Specifically,
given the input U ∈ RV×N , the diffusion of each feature channel can be

Htn(U[:, n]) = exp(−tnM−1L)U[:, n], ∀n = 1, . . . , N, (2)

where L ∈ RV×V is the cotangent Laplacian of S, M ∈ RV×V is the respective
mass matrix, and tn is a parameter that controls the scale of diffusion. Accord-
ingly, if we set t = {tn}Nn=1 for all feature channels as learnable, it intuitively
achieves channel-wise adaptive feature propagation over geodesic receptive fields
flexibly determined in a data-driven fashion (from local to global). When com-
bined with vertex-wise MLPs, such a simple operation is as expressive as com-
plicated geodesic convolutions, which is theoretically guaranteed [5,18]. More
importantly, compared with convolutions, this heat function-based learnable dif-
fusion has two critical advantages: 1) No need to pre-determine kernel sizes and
largely reducing the number of learnable parameters; 2) the principled founda-
tion of the (continuous) heat function makes the diffusion results robust to the
resolution of S and how it is meshed (which changes L and M).

Although simple and powerful, the implementation of Eq.(2) is computa-
tionally infeasible due to large-scale inverse matrix. To address this challenge,
a commonly used numerical solution is truncating diffusion to a low-frequency
Laplacian basis of L and M, i.e., the acceleration used in DiffusionNet [16]. Let
λ = {λi}ki=1 ∈ Rk×1 be the top-k eigenvalues, and Φ = [ϕi]

k
i=1 ∈ RV×k de-

notes the respective orthogonal basis, satisfying Lϕi = λiMϕi. Then, such a
spectral-accelerated spatial diffusion is like:

Htn(U[:, n]) ≈ Φexp(−tnλ)⊙ (ΦTMU[:, n]), ∀n = 1, . . . , N, (3)

where {L,M,Φ,λ} are mesh-specific and can be efficiently precomputed via
standard package [13,15], and tn is the per-channel learnable parameter.

However, it is worth noting that such a low-band approximation could lead
to considerable errors in processing cortical surfaces, due to the loss of high-
frequency information that is critical in describing highly folded structures. To
explain this assumption, in Fig. 2, we show a representative example to approxi-
mate a subject in terms of different numbers of eigenvectors. As can be seen, even
when k is as large as 1,000 (which means large computational burdens), there
are still significant differences between the original and reconstructed surfaces.

Therefore, to make a more precise information aggregation and keep effi-
ciency, we design a simple but intuitive strategy to realize full-band spectral ac-
celeration of learnable spatial diffusion. Specifically, given the input feature U,
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Fig. 2. An example to show the difference between original and reconstructed surfaces.

we first roughly separate the high-frequency part from its low-frequency part,
such as Uh = U−Ul (where Ul = ΦΦTMU). Then, a nonlinear mapping of Uh

is performed as a residual complementary to help refine the lost details caused
by spectral truncation. Our full-band solution is like:

Htn(U[:, n]) ≈ Φexp(−tnλ)⊙ (ΦTMU[:, n]) +MLPh(Uh[:, n]), ∀n = 1, . . . , N, (4)

where MLPh(·) (i.e., high-freq MLP in Fig. 1) is a simple three-layer MLP with
ReLU after each layer. Due to such a straightforward design, we can properly
truncate k while preserve fine-grained details in a lightweight fashion.

2.3 More Details
Overall, Cortex-Diffusion contains 4 FB-Diffusion blocks, each with 128 input
and output channels (i.e., N = 128 in Fig. 1), respectively. To be lightweight, the
design of the three-layer MLPh(·) in each FB-SASD module draws inspiration
from SqueezeNet [10], reducing the number of channels in the middle layer by
half. We set k = 200 for spectral acceleration. The number of learnable parame-
ters for the whole network is controlled as 0.49 MB. Notably, in both the training
and test steps, our Cortex-Diffusion can flexibly process surfaces with varying
sizes and mesh patterns, without the need to modify them to be the same.

3 Experiments
3.1 Experimental Setup
Datasets. We conducted comprehensive experiments to evaluate the efficacy of
our methods on two public datasets: 1) Mindboggle [11], an adult brain imag-
ing dataset with 101 samples; 2) dHCP [14], an infant brain imaging dataset
with 558 samples. We used FreeSurfer [3] to reconstruct cortical surfaces in Mind-
boggle, and directly used the surface files released by dHCP project. Mindboggle
has 32 ROIs, with the number of vertices ranging from 102k to 185k; dHCP has
17 ROIs, with the number of vertices ranging from 22k to 126k. The presented
experimental results were quantified on the left hemispheric surfaces.

Comparison Methods. We compared our method with both the geometric
deep networks based on spherical mapping, i.e., 1) Spherical U-Net [19] and
2) SPHARM-Net [7], and those can work directly on original surfaces, i.e.,
3) SubdivNet [9] and 4) DiffusionNet [16]. Specifically, for Spherical U-Net
and SPHARM-Net, we used FreeSurfer to perform spherical mapping, and then
resample spherical surfaces onto the standard ico6 sphere. Following [19,7], mean
curvature and sulcal depth were quantified as their methods’ input. For Subdi-
vNet, we used the features described in the original paper [9] as the input, and as
required, we remeshed all cortical surfaces to have the same connectivity pattern
by using the MAPS algorithm [12].
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Table 1. Quantitative results obtained by different methods on Mindboggle.
Methods Rotation

Alignment Input Spherical
Mapping

Params
(MB) Dice (%)

Spherical U-Net

No

cortical
attributes Yes 6.72 86.57 ± 2.63

SPHARM-Net 4.31 88.06 ± 1.99
SubdivNet descriptor [9]

No

2.43 85.99 ± 2.21
DiffusionNet xyz 0.47 87.12 ± 2.11
Ours 0.49 88.18 ± 1.95
Spherical U-Net

Yes

cortical
attributes Yes 6.72 87.96 ± 2.18

SPHARM-Net 4.31 88.00 ± 1.90
SubdivNet descriptor [9]

No

2.43 86.53 ± 1.84
DiffusionNet xyz 0.47 87.36 ± 1.96
Ours 0.49 88.33 ± 1.90

Implementation Details. We employed 5-fold cross-validation for perfor-
mance quantification, i.e., three folds for training, one fold for validation, the
remaining one fold for test, and iterated five times. We trained our Cortex-
Diffusion by minimizing the vertex-wise cross-entropy loss. We used the ADAM
optimizer with an initial learning rate of 0.001, with 0.5 decay if the loss on the
validation set did not decrease for two consecutive epochs. In the test phase, we
used the models with the highest Dice coefficient on the validation sets. We con-
ducted all experiments on a PC with a NVIDIA RTX 3060 GPU. For fairness,
all competing methods were implemented under the same training scheme. The
performance was quantified in terms of Dice.

3.2 Results
Evaluation on adult cortical surfaces. The results obtained by different
methods on the Mindboggle dataset are summarized in Table 1. This table de-
lineates the performance outcomes under two distinct conditions categorized
by "Rotation Alignment", i.e., the absence ("No") or presence ("Yes") of rigid
alignment. This alignment pertains to whether the cortical surface analyses were
conducted without or with a predefined standard orientation, respectively. Ex-
amination of Table 1 allows us to draw three key conclusions. Primarily, when
compared with other approaches, our Cortex-Diffusion demonstrates superior
accuracy in both scenarios. This is achieved through utilizing fundamental in-
put data and foregoing the need for spherical mapping, thereby underscoring
our method’s precision and efficiency in cortical surface parcellation. Addition-
ally, the comparison with DiffusionNet reveals that our method achieves a 1%
improvement in Dice coefficient scores in both alignment conditions, while only
necessitating a marginal increase in model complexity, specifically an additional
0.02 MB in learnable parameters. This increment underscores the effectiveness
of our FB-SASD module’s design. Moreover, our Cortex-Diffusion exhibits com-
mendable performance consistency across both conditions, with a negligible re-
duction in Dice coefficient scores (0.15%) in the absence of alignment. This re-
silience against modest rotational variations among subjects is indicative of our
method’s robustness, achieving a level of performance on par with SPHARM-
Net, which is explicitly designed to enhance rotational invariance.

As a supplementary, we also visualize the representative parcellations ob-
tained by different methods in Fig. 3. As can been seen, our Cortex-Diffusion
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Fig. 3. Qualitative visualization of parcellations obtained by different models.

obtained more precise delineations especially at the challenging brain regions
like the zoomed-in parts in Fig. 3. These visualization results further justify the
efficacy of our method. Notably, here we only present the results in the case of
rotation alignment. For more results without rotation alignment, please refer to
the supplemental material.

Evaluation on infant cortical surfaces. The results obtained by different
methods on the dHCP dataset are summarized in Table 2. Here, SubdivNet was
removed from comparison, since its remeshing requirement is too time consuming
on a PC for such a dataset with more than 500 subjects. From Table 2, we
can see that our Cortex-Diffusion led to state-of-the-art performance on these
infant cortical surfaces, which is consistent with the conclusion we draw in the
adult case. Notably, the improvement by our method in Table 2 is of great
value, considering that spherical mapping and cortical attribute quantification
are themselves challenging tasks in infant brain image analyses.

Table 2. Quantitative results obtained by different methods on dHCP.
Methods Input Spherical

Mapping
Params
(MB) Dice (%)

Spherical U-Net cortical
attributes Yes 6.72 92.64 ± 1.39

SPHARM-Net 4.31 92.83 ± 1.25
DiffusionNet xyz No 0.46 93.00 ± 1.24
Ours 0.49 93.84 ± 1.23

Assessment of discretization-agnostic robustness. To evaluate the ro-
bustness of our method with respect to mesh resolutions and types (i.e., the
discretization-agnostic property), we conducted a respective analysis on Mind-
boggle. Specifically, we used the QEM algorithm [4] implemented by the Trimesh
toolkit [1] to simplify original high-resolution cortical surfaces, reducing the num-
ber of vertices per surface to a quarter. Subsequently, we evaluated competing
methods across four distinct scenarios: training and testing on high-resolution
meshes (b/b), training on high-resolution but testing on low-resolution meshes
(b/a), training on low-resolution but testing on high-resolution meshes (a/b),
and both training and testing on low-resolution meshes (a/a).
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The results are summarized in Table 3. From Table 3, we can have two key
observations. First, the performance of Spherical U-Net and SubdivNet drops a
lot when the training and test settings are inconsistent (i.e., b/a and a/b). In
contrast, SPHARM-Net, DiffusionNet, and our Cortex-Diffusion has relatively
more stable accuracies across different situations thanks to the discretization-
agnostically technical design. More specifically, SPHARM-Net leverages spher-
ical harmonics [2], while our method and its backbone (DiffusionNet) rely on
the heat diffusion functions, both are robust to the changes of vertical num-
ber and connectivity. Second, compared with SPHARM-Net and DiffusionNet,
our Cortex-Diffusion has the best accuracy in the most challenging case of a/b,
i.e., applying the networks trained on low-resolution surfaces to unseen high-
resolution surfaces with changed connectivity patterns. It suggests the general-
izability and practical usage of our method, considering that converting meshes
to have the same patterns is a non-trivial task and may cause information losses.

Table 3. Assessment of the robustness of different methods concerning the changes
between training and test settings. Here, x/y denotes training on x but testing on y;
b and a represent original and down-sampled (i.e., remeshed) surfaces, respectively.

Methods b/b b/a a/b a/a
Spherical U-Net 86.57 ± 2.63 49.29 ± 7.13 27.81 ± 3.38 86.83 ± 2.52
SPHARM-Net 88.06 ± 1.99 87.93 ± 2.01 87.94 ± 1.91 87.94 ± 1.92
SubdivNet 85.99 ± 2.21 82.08 ± 2.29 78.66 ± 2.66 85.41 ± 2.02
DiffusionNet 87.12 ± 2.11 86.64 ± 2.05 87.12 ± 2.14 86.87 ± 2.06
Ours 88.18 ± 1.95 87.55 ± 2.01 88.23 ± 1.98 87.89 ± 1.91

Fig. 4. Robustness of our Cortex-Diffusion method with respect to spectral-
acceleration ratios.

Assessment of robustness to spectral-acceleration ratios. Our method
combines low-frequency spectral acceleration with high-frequency MLP to ap-
proximate full-band spectral-accelerated spatial diffusion. The balance between
the two parts is controlled by the parameter k, i.e., the number of eigenvectors
in the Laplacian basis. To check the influence of k, we changed its values from 30
to 500, and compared our Cortex-Diffusion with its DiffusionNet backbone, with
the results summarized in Fig. 4. As can be seen, the performance of DiffusionNet
improves with the increase of k, as more information from larger frequency in-
tervals is used for computing diffusion. However, an obvious marginal utility can
be observed when k reaches 300. In contrast, our method consistently achieves
better results across all situations. Notably, the performance of our method at
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k = 30, already surpasses DiffusionNet at k = 200, further justifying the techni-
cal contribution of our FB-SASD module design.

4 Conclusion
In this paper, we have proposed an intuitive strategy to achieve full-band spectral-
accelerated spatial diffusion learning, based on which a geometric deep network
has been constructed for fully automated cortical surface parcellation in indi-
vidual spaces. Our method leverages original surfaces’ vertical coordinates as
network input, producing accurate parcellation results without the need of time-
consuming spherical operations. Both the evaluations on adult and infant cases
have justified the good performance of our method as well as its robustness to
the changes of mesh resolutions and connectivity.
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