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Abstract. Alzheimer’s Disease (AD) is a neurodegenerative condition
characterized by diverse progression rates among individuals, with chan-
ges in cortical thickness (CTh) closely linked to its progression. Accu-
rately forecasting CTh trajectories can significantly enhance early di-
agnosis and intervention strategies, providing timely care. However, the
longitudinal data essential for these studies often suffer from temporal
sparsity and incompleteness, presenting substantial challenges in mod-
eling the disease’s progression accurately. Existing methods are limited,
focusing primarily on datasets without missing entries or requiring prede-
fined assumptions about CTh progression. To overcome these obstacles,
we propose a conditional score-based diffusion model specifically designed
to generate CTh trajectories with the given baseline information, such as
age, sex, and initial diagnosis. Our conditional diffusion model utilizes all
available data during the training phase to make predictions based solely
on baseline information during inference without needing prior history
about CTh progression. The prediction accuracy of the proposed CTh
prediction pipeline using a conditional score-based model was compared
for sub-groups consisting of cognitively normal, mild cognitive impair-
ment, and AD subjects. The Bland-Altman analysis shows our diffusion-
based prediction model has a near-zero bias with narrow 95% confidential
interval compared to the ground-truth CTh in 6-36 months. In addition,
our conditional diffusion model has a stochastic generative nature, there-
fore, we demonstrated an uncertainty analysis of patient-specific CTh
prediction through multiple realizations. Our code is available at https:
//github.com/siyeopyoon/Diffusion-Cortical-Thickness-Trajectory.
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1 Introduction

Alzheimer’s Disease (AD), as one of the most common neurodegenerative dis-
eases [16], has an insidious onset, with the progressive decline of cognitive and
behavioral functions and irreversible brain atrophy. Typically, the full progres-
sion of AD, from a cognitively normal (CN) state, through mild cognitive im-
pairment (MCI), to eventual AD, may span many years. The transition between
these states—or the rate of deterioration—varies significantly among individ-
uals and at different stages of the disease [17,18]. Fortunately, the change of
biomarkers can correspond to specific groups, providing a new insight for pre-
dicting future disease progression [14]. The relationships between the trajectory
of biomarkers, such as changes in cortical thickness (CTh), and the gradual pro-
gression of AD raises the necessity for longitudinal data. However, longitudinal
data in AD studies frequently suffer from sparsity (with significant gaps between
consecutive visits) and incompleteness (where records for certain visits may be
missing for various reasons), posing significant challenges for modeling disease
progression [9].

According to [13], the reduction in CTh has been closely associated with the
advancement of AD, making CTh a valuable biomarker for predicting tasks re-
lated to AD. Some literature has been proposed to model the progression of CTh.
For example, Pérez-Millan et al. [11] utilized support vector regression to fit the
cortical thickness model and predict longitudinal visits using baseline data. Mari-
nescu et al. [10] introduced a parametric model for tracking the progression of
AD, designed to extrapolate long-period patterns of brain pathology from limited
short-period longitudinal datasets. However, these existing methods either focus
on the complete data or require prior knowledge of disease trajectories, which
can be challenging to ascertain beforehand, especially for diseases with high
variability. Recently, deep learning techniques have demonstrated encouraging
outcomes in uncovering patterns within complex datasets [19,7]. In particular,
diffusion models, as a subset of generative models, have attracted considerable
interest across various fields due to their remarkable capabilities[15]. Unlike de-
terministic models such as recurrent neural networks (RNN), diffusion models
are adept at managing uncertainties thanks to their inherent stochastic mech-
anism. Furthermore, conditional diffusion models offer a versatile approach for
generating targeted outputs under specific conditions. Nonetheless, the applica-
tion of diffusion models in disease progression modeling remains sparse.

In this paper, we propose a conditional score-based diffusion model to pre-
dict different trajectories of CTh. To our knowledge, our model represents the
first attempt at longitudinal prediction of CTh based on the diffusion model.
We employ the "elucidating the design space of diffusion-based generative mod-
els" (EDM) framework as the backbone [6]. Our model takes three conditions
to guide the diffusion process: the clinical information (including diagnosis, sex,
and age), the CTh of the previous visit, and the time interval between differ-
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Fig. 1. Overview of the score-based diffusion model framework for cortical
thickness (CTh) prediction. (A) Training of the conditional score-based diffusion
model is achieved through a forward diffusion process integrating baseline information
such as demographics, diagnosis, and inter-scan interval with CTh measurements. The
baseline and follow-up T1-weighted MRIs are pre-processed to extract the CTh using
FreeSurfer. The concatenated baseline information is then fed through the 1D denois-
ing U-net to estimate the score function, which is used in the reverse diffusion process.
The 1D denoising U-net is trained by MSE loss to estimate gradual changes in data dis-
tributions from baseline information to prediction of CTh changes. (B) The prediction
stage employs a reverse diffusion process conditioned on baseline characteristics and
CTh, utilizing a trained denoising U-net and iterative denoising to estimate changes in
CTh, which can then be used to predict future CTh trajectories. Note that our frame-
work supports continuous prediction through a flexible selection of time differences.

ent scans. We evaluated our conditional score-based diffusion model using the
Alzheimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) chal-
lenge cohort (https://tadpole.grand-challenge.org/). Population, sub-group, and
patient-specific analysis demonstrated the effectiveness of our model in the lon-
gitudinal CTh prediction.

2 Method

2.1 Data Description

In our study, we utilized TADPOLE Challenge cohort, a comprehensive dataset
derived from the Alzheimer’s Disease Neuroimaging Initiative. Our analysis con-
sidered various variables, including diagnosis, age, gender, and the longitudinal

https://tadpole.grand-challenge.org/
https://adni.loni.usc.edu/


4 Q. Xiao et al.

CTh across 68 regions of interest (ROIs) according to the Desikan-Killiany cor-
tical atlas [2]. The measurement of CTh was obtained through a sequential
longitudinal processing pipeline in Freesurfer [12], encompassing steps such as
registration, normalization, skull stripping, segmentation, and parcellation.

In our study, we successfully enrolled a total of 898 participants across five
distinct time points: baseline (bl), 6 months (m06), 12 months (m12), 24 months
(m24), and 36 months (m36). All enrolled participants had complete data at
baseline, however, varying degrees of missing data were observed in subsequent
follow-up visits. Therefore, we allocated 178 participants with complete data to
the testing set and the remaining 720 participants to the training set. Initial
diagnoses at baseline revealed that the training cohort included 187 AD, 324
MCI, and 209 CN. The testing cohort initially consisted of 100 MCI and 78 CN
individuals. By the 36-month mark, the composition of the testing cohort had
evolved to include 40 AD, 68 MCI, and 70 CN individuals.

2.2 Conditional Score-based Diffusion Model for CTh Prediction

Previous research has indicated a connection between the progression of AD and
patterns of CTh [4,8]. Additionally, several clinical factors, such as age and sex,
may affect different variations in CTh across specific brain regions [3]. Thus,
our diffusion model is conditioned by the baseline information provided (Fig. 1),
such as the initial status of CTh, other available demographics, initial diagnosis,
and the time difference between the baseline and the target prediction time. This
represents the multifaceted nature of the progression of thinning of the cerebral
cortex.

The diffusion model consists of forward and reverse diffusion processes. Dur-
ing the forward diffusion process, the diffusion model gradually introduces Gaus-
sian noise to the conditional data distribution p(x|y), creating a sequence of
progressively noisier samples as described by the following equation:

p(xt|x0, y) = N(xt;µtx0, µ
2
tσ

2
t I), (1)

where x is a residual of two CTh measurements at different time points, and y is
a given baseline condition, such as clinical characteristics and initial CTh. This
process is a continuous transformation that transitions the data distribution to
a prior distribution over time t ranging from 0 to T , where the initial state x(0)
follows the data distribution p0, and the final state x(T ) aligns with the prior
distribution pT .

In the context of score-based generative models, this transformation is de-
picted by a stochastic differential equation (SDE):

dx = f(x, t)dt+ g(t)dw, (2)

where w represents Brownian motion, f(·, t) is the drift function, and g(t) denotes
the diffusion coefficient.

A reverse-time SDE governs the reverse process to generate samples from the
data distribution x(0) ∼ p0 starting from the prior distribution x(T ) ∼ pT . The
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conditional reverse diffusion process can be formulated into an ordinary differ-
ential equation that offers a deterministic perspective of the diffusion process by
eliminating the stochastic component (Brownian motion) [6]:

dx = [− ˙σ(t)σ(t)∇x log pt(x|y)]dt, (3)

where the score function ∇x log pt(x|y) represents the gradient of the log-likelihood
of the data distribution to the data itself. For a given data point x and baseline
condition y, the conditional score function guides this denoising process by in-
dicating how to adjust the data at each step to make it more likely under the
training data distribution. To effectively execute the reverse process, the score
function, ∇x log pt(x|y), which can be estimated using a neural network trained
through score matching alongside a denoiser function D(x;σ, y):

∇x log pt(x|y) = (D(x;σ, y)− x)/σ2. (4)

We trained denoiser function D(x;σ, y) via a mean squared error (MSE) loss:

L := Epdata
En∼N(0,σ2I)∥D(x+ n;σ, y)− x∥22. (5)

Once the model is trained, we use the trained model to sample and estimate the
change of CTh in the reverse process using Equation (3).

2.3 Training and Implementation Details

Our conditional score-based diffusion model is based on the EDM framework
[6]. We have modified the neural network architecture to a 1D Attention U-net.
We used 71 biomarkers: 68 CTh values for 68 brain regions, plus three non-
CTh variables (i.e., age, gender, and diagnosis). These non-CTh variables, along
with the time gap between scans, were vectorized by repeating each of them
68 times to match the CTh length and concatenated in the channel direction.
The biomarkers and time gap were zero-padded to a dimension of 72 for model
compatibility with the model’s upsampling and downsampling layers.

For inference, our model took 6-channel inputs (Gaussian noise, initial CTh,
age, gender, diagnosis, and time gap) of length 72. The model generated the
change of CTh, outputting a single-channel size of 72 through the reverse diffu-
sion process. We then discarded the zero-padded region to obtain the final result.
The 1D Attention U-net was trained on a single NVIDIA A100 GPU with 40GB
of memory and a batch size of 64 for 8192 epochs using Adam optimizer with a
learning rate of 0.001. The number of function evaluations was 1000 for reverse
sampling.

3 Results

3.1 Comparison Results with Related Methods

We compared the predictive results of the longitudinal CTh from our proposed
method with the following models. Firstly, Zhou et al. [20] introduced a con-
vex fused sparse group lasso (cFSGL), which treats the prediction at each time
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Table 1. Comparison MAE results (mean±SD) obtained by various methods on pre-
dicting longitudinal cortical thickness within the entire study cohort (All) and three
subgroups (CN, MCI, and AD), respectively.

Method CN MCI AD All

cFSGL[20] 0.142±0.088 0.162±0.135 0.144±0.085 0.150±0.108
GRUD [1] 0.109±0.016 0.121±0.035 0.124±0.022 0.117±0.026

LSTM-T [5] 0.114±0.015 0.124±0.031 0.125±0.021 0.120±0.024
Ours 0.082±0.018 0.096±0.046 0.099±0.017 0.092±0.032

Table 2. MAE results (mean±SD) from the ablation study on predicting longitudinal
cortical thickness, within the entire study cohort (All) and three subgroups (CN, MCI,
and AD), respectively. U-net models with and without the attention mechanism are
referred to as U-net (w/ a) and U-net (w/o a), respectively.

Method CN MCI AD All

U-net (w/o a) 0.098±0.017 0.112±0.039 0.117±0.022 0.108±0.029
U-net (w/ a) 0.084±0.025 0.092±0.039 0.116±0.029 0.094±0.034

Ours 0.082±0.018 0.096±0.046 0.099±0.017 0.092±0.032

point as a separate task and leverages baseline features to forecast longitudi-
nal outcomes. Secondly, Che et al. [1] combined masking and time interval with
gated recurrent unit (GRU) to capture the long-term temporal dependencies.
This method employs a weighted integration of the most recent observation, the
empirical mean, and a recurrent component for data imputation. Lastly, Jung et
al. [5] used a deep recurrent network based on long short-term memory (LSTM)
for personalized AD prediction via intrinsic temporal and multivariate relations.

We compared the mean absolute error (MAE) across all patients and all time
points for all methods under comparison. The data presented in Table 1 suggest
that non-linear models (including RNN-based models and our model) outperform
the linear model (cFSGL), likely due to their ability to capture the more complex
dynamics inherent in longitudinal changes. Furthermore, our diffusion model
surpasses all other models in terms of performance across the entire testing
cohort and all three specific subgroups. This superiority may be attributed to
incorporating the diffusion process within our model, enabling a more nuanced
understanding and prediction of CTh trajectories. Lastly, predicting the CTh
trajectory appears more challenging within the MCI and AD groups than in the
CN group, as indicated by the MAE results. A plausible explanation could be
that subjects with MCI and AD may undergo more obvious and diverse changes
in CTh, leading to more heterogeneous developments among individuals during
follow-up visits compared to those observed in CN subjects.
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Fig. 2. Bland-Altman analysis and correlation of predicted and measured
cortical thickness across different subgroups. (A) From left to right, Bland-
Altman plots show the agreement between predicted and actual cortical thickness for
all subjects (N=178), CN subjects (N=70), MCI subjects (N=68), and AD subjects
(N=40), respectively, with mean differences (MD) near zero predictive bias. (B) Scatter
plots with linear regression analysis demonstrate strong correlations (R2 > 0.9) between
predicted and actual cortical thickness across all subjects and all subgroups.

3.2 Ablation Study

To assess the impact of the diffusion process on predicting CTh, we introduced
two variants of network architecture: U-net (w/o a) and U-net (w/ a). The
distinguishing feature between the two is incorporating an attention module in
U-net (w/ a), which is absent in U-net (w/o a). The U-net (w/o a) and U-net (w/
a) were trained using the identical setting and hyperparameters to the diffusion
model, while training loss was given as an MSE loss for the prediction of CTh
change in a supervised manner. Unlike our proposed diffusion-based model, these
variants operate deterministically, predicting CTh changes. The findings in Table
2 demonstrate that the attention mechanism enhances predictive accuracy. While
our diffusion model outperforms in most scenarios, it falls slightly behind within
the MCI group compared with U-net (w/ a). However, a significant advantage of
our model is its ability to quantify prediction uncertainty, which was not available
in the deterministic variants. This capability to predict with uncertainty offers
more dependable support for clinical decision-making processes.

3.3 Group-wise Analysis of Our Method

To delve deeper into the predictive accuracy of our proposed model, we per-
formed both Bland-Altman analysis and linear regression analysis to compare
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Fig. 3. Longitudinal cortical thickness predictions in AD and CN exemplar
subjects. (A) Continuous prediction versus actual sparse measurement of average
cortical thickness in a 60-year-old male AD patient and 71-year-old male CN subject
over 36 months. Predicted values for AD (red) demonstrate more obvious cortical
thinning, while data for CN subjects (black) exhibit relative stability. (B) Separate
analyses of the left and right para-hippocampal regions show a similar pattern, with
the AD patient exhibiting a more pronounced decline in cortical thickness than the CN
subject. The error bar of predicted values demonstrates the uncertainty of the model
through multiple realizations.

our predictions with the ground truth across all subjects and subgroups, as de-
picted in Figure 2. In the Bland-Altman analysis, the proximity of all mean
differences (MD) lines to zero suggests negligible predictive bias, with most dif-
ferences residing within the mean ± 1.96 SD range, as shown in Figure 2(A).
There’s a remarkable concordance between the predicted CTh and the actual
measurements across all examined groups. Furthermore, the linear regression
analysis, as illustrated in Figure 2(B), reveals a strong positive correlation be-
tween the predicted CTh and ground truth across all groups under comparison,
with both the correlation coefficient (R2) and the slope above 0.9.

3.4 Patient-specific Analysis of Our Method

Our framework not only facilitates continuous prediction but also enables the
analysis of uncertainty, which has significant value in clinical settings. Conse-
quently, we selected two representative subjects for illustrative purposes: one
60-year-old male from the AD group and another 71-year-old male from the CN
group in Figure 3. Although the two samples have similar starting points at
baseline, as time progresses, the gap in average CTh between the AD and CN
samples widens, indicating a more pronounced trend of CTh thinning in the AD
sample compared to the CN sample. Figure 3(B) further illustrates the predic-
tive CTh outcomes for the para-hippocampal region in both the left and right
hemispheres. Despite the disparities in CTh values between the two hemispheres,
a consistent pattern emerges—the AD subject demonstrates a more noticeable
decrease in CTh values than the CN subject. The uncertainty of the model in
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the patient-specific analysis is shown as an error bar, which is calculated through
multiple stochastic realizations.

4 Conclusion

In this paper, we proposed a conditional score-based diffusion model to forecast
CTh progression solely based on the baseline information. Our model was eval-
uated at different scales, including population, sub-group, and patient-specific.
The analyses demonstrate the potential of our method in the prediction of lon-
gitudinal CTh, which may benefit the diagnosis and intervention strategies in
the preclinical stages of AD. Our diffusion model-based method can not only
conduct continuous prediction of CTh values flexibly but also provide prediction
uncertainty, which holds significant value in clinical settings.

Acknowledgments. This study was funded by National Natural Science Foundation
of China (grant number U22A20350). Data collection and sharing for the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) is funded by the National Institute on Ag-
ing (National Institutes of Health Grant U19 AG024904). The grantee organization
is the Northern California Institute for Research and Education. More details about
the funding sources of ADNI can be found at https://adni.loni.usc.edu/wp-content/
uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks
for multivariate time series with missing values. Scientific reports 8(1), 6085 (2018)

2. Desikan, R.S., et al.: An automated labeling system for subdividing the human
cerebral cortex on mri scans into gyral based regions of interest. Neuroimage 31(3),
968–980 (2006)

3. Gennatas, E.D., et al.: Age-related effects and sex differences in gray matter den-
sity, volume, mass, and cortical thickness from childhood to young adulthood.
Journal of Neuroscience 37(20), 5065–5073 (2017)

4. Hwang, J., et al.: Prediction of alzheimer’s disease pathophysiology based on corti-
cal thickness patterns. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease
Monitoring 2, 58–67 (2016)

5. Jung, W., Jun, E., Suk, H.I., Initiative, A.D.N., et al.: Deep recurrent model for in-
dividualized prediction of alzheimer’s disease progression. NeuroImage 237, 118143
(2021)

6. Karras, T., Aittala, M., Aila, T., Laine, S.: Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems 35,
26565–26577 (2022)

7. Kim, B.H., et al.: Large-scale graph representation learning of dynamic brain con-
nectome with transformers. arXiv preprint arXiv:2312.14939 (2023)

https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf
https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_Agreement.pdf


10 Q. Xiao et al.

8. Kim, J., et al.: Distinct spatiotemporal patterns of cortical thinning in alzheimer’s
disease-type cognitive impairment and subcortical vascular cognitive impairment.
Communications Biology 7(1), 198 (2024)

9. Li, X., Guo, N., Li, Q.: Functional neuroimaging in the new era of big data. Ge-
nomics, Proteomics and Bioinformatics 17(4), 393–401 (2019)

10. Marinescu, R.V., et al.: Dive: A spatiotemporal progression model of brain pathol-
ogy in neurodegenerative disorders. NeuroImage 192, 166–177 (2019)

11. Pérez-Millan, A., et al.: Cortical thickness modeling and variability in alzheimer’s
disease and frontotemporal dementia. Journal of Neurology pp. 1–11 (2023)

12. Reuter, M., Schmansky, N.J., Rosas, H.D., Fischl, B.: Within-subject template
estimation for unbiased longitudinal image analysis. Neuroimage 61(4), 1402–1418
(2012)

13. Schwarz, C.G., et al.: A large-scale comparison of cortical thickness and volume
methods for measuring alzheimer’s disease severity. NeuroImage: Clinical 11, 802–
812 (2016)

14. Xu, L., et al.: Multi-modal sequence learning for alzheimer’s disease progression
prediction with incomplete variable-length longitudinal data. Medical Image Anal-
ysis 82, 102643 (2022)

15. Yang, L., et al.: Diffusion models: A comprehensive survey of methods and appli-
cations. ACM Computing Surveys 56(4), 1–39 (2023)

16. Yang, Z., et al.: A deep learning framework identifies dimensional representations
of alzheimer’s disease from brain structure. Nature communications 12(1), 7065
(2021)

17. Yi, F., et al.: Identifying underlying patterns in alzheimer’s disease trajectory: a
deep learning approach and mendelian randomization analysis. Eclinicalmedicine
64 (2023)

18. You, P., et al.: Characterization of brain iron deposition pattern and its association
with genetic risk factor in alzheimer’s disease using susceptibility-weighted imaging.
Frontiers in Human Neuroscience 15, 654381 (2021)

19. Zhao, X., et al.: Multi-size computer-aided diagnosis of positron emission tomogra-
phy images using graph convolutional networks. In: 2019 IEEE 16th International
Symposium on Biomedical Imaging (ISBI 2019). pp. 837–840. IEEE (2019)

20. Zhou, J., et al.: Modeling disease progression via multi-task learning. NeuroImage
78, 233–248 (2013)


	Conditional Score-Based Diffusion Model for Cortical Thickness Trajectory Prediction

