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Abstract. Deep neural networks demand large-scale labeled dataset for
optimal performance, yet the cost of annotation remains high. Deep ac-
tive learning (DAL) offers a promising approach to reduce annotation
cost while maintaining performance. However, traditional DAL methods
often fail to balance performance and computational efficiency, and over-
look the challenge posed by class imbalance. To address these challenges,
we propose a novel framework, named Class-Balancing Deep Active
Learning(CB-DAL), comprising two key modules: auto-mode feature
mixing(Auto-FM) and minority push-pull sampling(MPPS). Auto-FM
identifies informative samples by simply detecting in inconsistencies in
predicted labels after feature mixing, while MPPS mitigates the class im-
balance within the selected training pool by selecting candidates whose
features close to the minority class centroid while distant from features
of the labelled majority class. Evaluated across varying class imbalance
ratios and dataset scales, CB-DAL outperforms traditional DAL meth-
ods and the counterparts designed for imbalanced dataset. Our method
provides a simple yet effective solution to the class imbalance problem
in DAL ,with broad potential applications.
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Fig. 1: Limitations and solutions for the class imbalance problem in DAL of
medical image classification

1 Introduction

Deep neural networks (DNNs) have achieved great success on medical image
analysis [13]. However, their training heavily relies on large-scale labeled datasets
to achieve high performance. Annotating medical image is not only laborious
and time-consuming, but requires costly expert effort. To tackle this challenge,
deep active learning(DAL) [17] is devised to identify and annotate valuable sam-
ples from unlabeled data pool. By iteratively training on updated labeled data
pool, DAL achieves comparable performance to models trained on fully labelled
dataset while reducing annotation costs. Typically, traditional DAL methods uti-
lize criteria such as uncertainty, diversity, or a hybrid approach combining both
for sample selection. Nevertheless, they often struggle to strike a balance between
optimal performance and computational cost. Although methods solely relying
on uncertainty [9,11] or diversity [6,19] offer simplicity in implementation, they
often yield suboptimal results due to their inherent limitations. Conversely, the
state-of-the-art(SOTA) hybrid approach [2] exhibits superior performance, but
demands substantial computational resources.

However, traditional DAL methods overlook the class distribution bias in
datasets, especially for medical image datasets. Furthermore, the sampling bias
issue inherent in DAL [8, 14] leads to a more complex optimization process and
suboptimal performance [3, 21]. Although some studies [1, 7, 10] have begun to
address the class imbalance issue in DAL. Nevertheless, VaB-AL [7] and BAL [10]
resort to difficult-to-train variational autoencoders (VAEs) to model the over-
all data distribution, substantially increasing computational demands.Moreover,
among these works, only BAL [10] has been validated on a real-world imbalanced
medical dataset.

Rethinking these limitations of existing DAL methods, as depicted in Fig.1,
we propose a framework, named Class-Balancing Deep Active Learning (CB-
DAL), and validate our method on two real-world imbalanced dataset. Our con-
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tributions are: 1) We propose an effective DAL framework to consider uncertainty
and class imbalance at the latent feature space. Employing Auto-mode Feature
Mixing(Auto-FM) between labeled feature centroids and unlabeled feature rep-
resentations, we efficiently identify informative samples via evaluating pseudo-
label changes. 2) We propose Minority Push-Pull Sampling (MPPS) based on
Euclidean distance to select candidates whose features are close to the centroid
of the minority class while distant from features of labelled majority class. 3)
Combining Auto-FM with MPPS, CB-DAL achieves superior performance than
traditional DAL methods and the counterparts designed for imbalanced dataset.

Fig. 2: Overview of the proposed CB-DAL framework for imbalanced medical
datasets

2 Methodology

Inspired by BAL [10] and ALFA-Mix [15], our framework enhances active learn-
ing efficacy by explicitly addressing the challenges posed by class imbalance (Fig.
2). It contains two modules: Auto-FM for more effectively selecting informative
unlabelled samples , and MPPS for mitigating the impact of class imbalance and
sampling bias introducing by traditional active learning.

2.1 Framework Formulation

In the framework, given a data pool P , we allocate a labeled data pool PL and an
unlabeled data pool PU , P = PL∪PU and ⊘ = PL∩PU . We first use the initial PL
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to pretrain the model f (θ) for K classes, which parameterized by θ = {θe, θc}.
Here, fe : X → RD is the backbone encoding the input into a D-dimensional
representation in a latent space, i.e. z = fe(x; θe). We compute the average
representation z∗ of the labelled samples per class. Furthermore, fc : RD → RK

acts as a classifier, mapping unseen samples from their representations to their
corresponding logits. For each round, we first maximize the performance of model
with PL. The subsequent query process can be divided into two stages: In the
Auto-FM stage, we select PS1 for informative samples. After that, we introduce
MPPS to select PS2 for class balancing. Finally, we get PS = PS1+PS2, and then
PS is annotated by the oracle and moved from PU to PL. When the performance
of fc (θ) reaches a plateau or the budget is exhausted, active learning can be
terminated.

2.2 Auto-Feature Mixing

Feature Mixing in Auto Mode The feature mixing process involves interpo-
lating between the representations of the unlabelled and labelled samples. This is
based on the assumption that features from samples near the decision boundary
can be easily influenced to predict differently after interpolating.

Firstly, we utilizes fe to extract features from all samples, and aggregate the
features from labelled data pool for each class by computing the average. Sec-
ondly, we mix features extracting from unlabeled samples Zu with each average
feature Z∗ to obtain new features Za. Za is denoted below:

Za = αZ∗ + (1− α)Zu, α ∈ [0, 1)D (1)

Finally, Za is fed into fc to obtain updated predictions, if the predictions differ
from the original ones, the corresponding unlabeled samples are considered as
informative candidates. To optimize the feature mixing process more effectively,
we set α as a learnable Gaussian-like matrix, L1 norm of α is added into the loss
function to mitigate model overfitting. Thereby, Auto-FM simplifies the process
of solving for α and reduces computational demands, while maintaining the high
performance advantages of the original approach

Variation in The Loss Function after Feature Mixing Applying Taylor
expansion to calculate the loss for mixed features yields:

ℓ (fc (Za) , y
∗) ≈ ℓ (fc (Z

u) , y∗) +
(
α (Z∗ − Zu)

T · ▽ℓ (fc (Z
u) , y∗)

)
(2)

max [ℓ (fc (Za) , y
∗)− ℓ (fc (Z

u) , y∗)] ≈ max[
(
α (Z∗ − Zu)

T · ▽ℓ (fc (Z
u) , y∗)

)
]

(3)
The variation in the loss function after feature mixing is influenced by two

conditions: 1) the disparity between Z∗ and Zu; 2) the gradient of the loss. The
former indicates the distinctiveness of the features and the degree of feature
discrepancy between labeled and unlabeled data, while the latter affects the
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model’s sensitivity to features. If there is a difference in labeled and unlabeled
data yet this results in only minimal changes in the model’s loss gradient, these
features may not be distinct enough for the model. Therefore, during training,
the final loss function is denoted below:

Loss = 1− ℓ (f (Za, y∗)) + ∥α∥ (4)

2.3 Minority Push-Pull Sampling

To address the challenges posed by class imbalance and mitigate the negative im-
pact of sampling bias of AL, we introduce Minority Push-Pull Sampling (MPPS).
Unlike label-based methods for imbalance, MPPS is a feature-based approach
that identifies samples belonging to minority class in latent feature space. By
"pulling" features from unlabeled samples while "pushing" them away from the
majority class features, MPPS is denoted below:

Xs = argmin

{
ℓ
(
e (xu) , µ

(
cminor
t

))
− min

∀cmaj
t ∈CMAJ

t

ℓ
(
e (xu) , µ

(
cmaj
t

))}
(5)

Xs represents the selected samples, ℓ (·) represents the Euclidean distance be-
tween two sets of features, e (xu) represents the encoding vectors of an unlabeled
sample, and µ represents the average feature values for a specific class within
the labeled samples. cminor

t denotes features of minority classes, cmaj
t denotes

features of majority classes, and t indicates the current t-th round of iteration.
The expression aims to minimize the difference between the features of the

current sample and those of the minority class while maximizing the difference
with the majority class in the labeled data pool.

3 Experiments and Results

3.1 Dataset and Evaluation

Bone Tumor Dataset This private dataset comprises radiographs obtained
from four centers, totaling 333 patients(osteolytic OS:136, GCT:197). Two ra-
diologists, each with over 10 years of experience in reading musculoskeletal
radiographs and blinded to the study, independently reviewed all radiographs
and selected the patients included in the study. All included bone tumors were
pathologically confirmed. We designate the primary center A as the internal
dataset(osteolytic OS:124, GCT:155), while the remaining three centers(osteolytic
OS:12, GCT:42) serve as the external test set.

ISIC2020 Dataset This public dataset [18] contains 33,126 images (benign:32542,
malignant:584) of benign and malignant skin lesions from 2,056 patients. The
dataset was curated by the International Skin Imaging Collaboration (ISIC)
and includes images from six different sources. All malignant diagnoses have
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been confirmed via histopathology, while benign diagnoses have been confirmed
using using expert agreement, longitudinal follow-up, or histopathology.

We primarily utilize the area under the receiver operating characteristic
(AUC) for evaluation.

3.2 Implementation Details

For Bone Tumor Dataset, all X-ray images are resized to 1080x1080. We ran-
domly split the internal dataset into a training set and an internal test set. Con-
sidering its small data scale, we adopt a partial annotation setting at different
percentages(50%, 60%, 70%, 80%) of the training set. We randomly selected 30%
of each class from the training set to initialize the model, while the remaining
data is used for the DAL process. As the class imbalance in the original dataset
is not severe enough, We resample the original training set to three imbalanced
ratios (2:1, 3:1, 5:1) to validate our method. The batch size is set to 2.

For ISIC2020 Dataset, we follow the setting in [22]. We randomly divide
this dataset into a training set, a validation set and a test set at a ratio of 8: 1:
1. Considering its large data scale, we adopt a partial annotation setting at at
different percentages(10%, 20%, 50%) of training set. We randomly selected 5%
of each class from the training set to initialize the model, while the remaining
data is used for AL process. The batch size is set to 128.

For both datasets, in each round, we allocate an equal budget to select the
most informative samples and minority class samples. We adopt EfficientNet-B6
with weights pretrained on ImageNet, using its backbone as the feature extractor
and fully connected layers as the classifier. Binary Cross Entropy (BCE) loss is
employed as the loss function. We employ the Adam optimizer and utilize cosine
annealing to reduce the learning rate from 1e-4 to 1e-12 over all 300 epochs.
Our method is implemented in Pytorch, using an NVIDIA RTX TITAN GPU
with 24GB memory. The weights used for testing were selected based on the
best-performing AUC on the internal test set or validation set.

3.3 Comparison and Ablation Experiments

To analyze of the effectiveness of Auto-FM, we compare our CB-DAL* (CB-DAL
without MPPS) with other traditional DAL methods, including Entropy [20],
Core-Set [19], BALD [11], BADGE [2], and ALFA-Mix(α = 0.5) [15]. The re-
sults of these comparison experiments on the original Bone Tumor Dataset are
reported in Table 1. CB-DAL* outperforms all traditional DAL methods and
random sampling method at each annotation budget, particularly under low
budget conditions.
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Table 1: Comparison experiments on internal/external test set of Bone Tumor
Dataset, CB-DAL* is our proposed DAL without MPPS for class imbalance

Annotation Ratio

Method 50% 60% 70% 80% 100%

Full / / / / 0.935/0.925

Random 0.521/0.581 0.669/0.658 0.769/0.776 0.834/0.839 /

Entropy [20] 0.710/0.679 0.766/0.806 0.802/0.828 0.855/0.853 /
Core-Set [19] 0.748/0.702 0.815/0.790 0.866/0.857 0.877/0.877 /
BALD [11] 0.753/0.754 0.839/0.802 0.869/0.827 0.893/0.849 /
BADGE [2] 0.755/0.738 0.838/0.816 0.862/0.849 0.890/0.887 /

ALFA-Mix [15] 0.783/0.772 0.860/0.845 0.899/0.889 0.918/0.899 /

CB-DAL* 0.820/0.800 0.872/0.865 0.902/0.899 0.923/0.903 /

We also analyze the effectiveness of auto-learned α. As shown in Fig 3, CB-
DAL* with auto-learned α demonstrates optimal performance and avoids disad-
vantages introduced by manual settings.

Fig. 3: The effectiveness of auto-learned α on the Bone Tumor Dataset.

To address class imbalance problem in DAL, we combine Auto-FM with
MPPS, and validate the effectiveness of MPPS on three class imbalance ratios
(2:1, 3:1, 5:1) of the Bone Tumor Dataset. With MPPS, CB-DAL demonstrates
a significant improvement over CB-DAL*. To further validate the effectiveness
of MPPS, we compare MPPS with other counterparts for class imbalance,such
as over-sampling [4, 16] and Focal loss [12] and LADM [5] . CB-DAL maintains
its advantage, especially under high class imbalance ratio. All results of these
experiments are shown in Fig. 4.
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Fig. 4: The comparison experiments with other class-balancing counterparts and
the ablation experiments of CB-BAL on the Bone Tumor Dataset

Table 2: Comparison experiments on ISIC2020 Dataset
Annotation Ratio

Method 10% 30% 50% 100%

Full / / / 0.904

Random 0.793 0.803 0.830 /

BAL 0.834 0.873 0.876 /
CB-DAL 0.852 0.883 0.896 /

4 Conclusion

In this paper, we proposed a simple yet effective framework, CB-DAL, to strike
a balance between performance and computational efficiency and solve class im-
balance problem in DAL for medical image classification. Based on Auto-FM
and MPPS, CB-DAL achieves optimal performance and high efficiency through
simple arithmetic operations between features. CB-DAL outperforms traditional
DAL methods and counterparts designed for imbalanced datasets across vary-
ing class imbalance ratios and data scales, especially when faced with limited
resources and high class imbalance.
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