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Abstract. In diffusion MRI (dMRI), a uniform single or multiple shell
sampling scheme is typically required for data acquisition in q-space,
because uniform spherical sampling offers the advantage of capturing
more information using fewer samples, leading to superior reconstruc-
tion results. Uniform sampling problems can be categorized into contin-
uous and discrete types. While most existing sampling methods focus on
the continuous problem that is to design spherical samples continuously
from single or multiple shells, this paper primarily investigates two dis-
crete optimization problems, i.e., 1) optimizing the polarity of an existing
scheme (P-P), and 2) optimizing the ordering of an existing scheme (P-
O). Existing approaches for these two problems mainly rely on greedy
algorithms, simulated annealing, and exhaustive search, which fail to ob-
tain global optima within a reasonable timeframe. We propose several
Mixed Integer Linear Programming (MILP) based methods to address
these problems. To the best of our knowledge, this is the first work that
solves these two discrete problems using MILP to obtain global opti-
mal or sufficiently good solutions in 10 minutes. Experiments performed
on single and multiple shells demonstrate that our MILP methods can
achieve larger separation angles and lower electrostatic energy, result-
ing better reconstruction results, compared with existing approaches in
commonly used software (i.e., CAMINO and MRtrix).

Keywords: Diffusion MRI · Signal Sampling · Signal Reconstruction ·
Mixed Integer Linear Programming.

1 Introduction

Diffusion MRI (dMRI) is a unique technique to non-invasively study microstruc-
tural tissue properties of white matter and reconstruct fiber tracts in the human
brain. In dMRI, diffusion weighted imaging (DWI) data is typically acquired us-
ing a single or multiple shell sampling scheme in q-space (i.e, the 3D acquisition
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parameter space of b value and b vector). Subsequently, the acquired DWI data
is fitted using various diffusion models, including Diffusion Tensor Imaging (DTI)
model [1] and various High Angular Resolution Diffusion Imaging (HARDI) mod-
els [14,3,12,15]. Diffusion models provide important diffusion quantities to reveal
various tissue properties, including fractional anisotropy (FA), generalized FA
(GFA), fiber Orientation Distribution Function (fODF), etc. The quality of re-
construction results is directly influenced by quality of sampling schemes. Thus
designing an appropriate sampling scheme is highly necessary.

Without any prior knowledge of fiber orientations, a good sampling scheme
requires signal samples to be uniformly distributed in sphere. A large angu-
lar separation between samples results in a large angular resolution and en-
sures good rotational invariance in reconstruction [4]. Uniform sampling prob-
lems can be categorized into continuous and discrete types. Most existing sam-
pling methods address the continuous problem, which aims to design a uni-
form single/multiple shell sampling scheme in the continuous sphere S2. Elec-
trostatic Energy Minimization (EEM) [10,2] designs sampling schemes by mini-
mizing electrostatic energy, which has been used in Human Connectome Project
(HCP) [11]. While Spherical Code (SC) [4] method directly maximizes the min-
imal angular separation between samples (i.e., covering radius, which is defined
as d({ui}Ni=1) = min

i6=j
arccos(uTi uj) for a given sample set {ui}Ni=1). Bases on an

existing scheme acquired by continuous sampling optimization, discrete prob-
lems aim at further optimize a subsampling set [2], the ordering [6,7], and the
polarity [13] of the existing scheme. In this paper, we mainly address two of the
discrete problems mentioned above, i.e., 1) optimizing the polarity of an existing
scheme (P-P), and 2) optimizing the ordering of an existing scheme (P-O).

Optimizing the polarity of an existing scheme (P-P) proves valuable for eddy
current correction 1. Sampling scheme design in dMRI normally requires the
antipodal symmetry constraint (i.e., a sample u is equivalent to its negative −u).
However, for effective eddy current correction, it becomes necessary to optimize
the polarity, i.e., the signs of directions, of a given scheme. This optimization
ensures that the scheme, with its adjusted polarity, remains uniform without the
antipodal symmetry constraint. Consequently, the samples should be distributed
across the entire sphere rather than being confined to a hemisphere. dirflip in
MRtrix 2 employs brute-force random search to optimize polarity for the single
shell case (P-P-S).

Optimization of the ordering of an existing scheme (P-O) is crucial, particu-
larly in scenarios involving potential scan interruptions. Premature termination
of a scan may result in a non-uniform partial scan, thereby compromising the
quality of reconstruction outcomes. Scanning infants or patients with epilepsy,
for example, is especially troublesome because they are incapable of staying
still during the long scanning time. Dubois et al. [8] proposed to separate close
gradient directions into different subsets to gain better partial scans. Cook et
al. [6] proposed using simulated annealing to optimize a weighted average of elec-
1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
2 https://mrtrix.readthedocs.io/en/dev/reference/commands/dirflip.html

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
https://mrtrix.readthedocs.io/en/dev/reference/commands/dirflip.html


MILP for Discrete Sampling Scheme Design in dMRI 3

trostatic energies of all partial subsets, which was released as orderpoints in
CAMINO 3. dirorder in MRtrix [13] 4 implements a greedy incremental EEM
(IEEM) method for single shell case (P-O-S) [7,2].

Existing methods (CAMINO [6] and MRtrix [13]) mainly focus on single
shell case for P-P and P-O, and fail to obtain global optima within a reasonable
timeframe. Moreover, simulated annealing and brute-force exhaustive search are
known to be computationally inefficient. In this paper, we propose novel Mixed
Integer Linear Programming (MILP) methods for these two discrete sampling
scheme design problems in both single and multiple shell cases. Experiment
results show that MILP can archive larger angular separation and lower electro-
static energy, compared with existing methods in CAMINO [6] and MRtrix [13].

2 Methods

2.1 Optimize the polarity of a scheme (P-P)

The P-P-S problem is to minimize the electrostatic energy of a given single shell
scheme {ui}Ni=1 by flipping certain points on the sphere, i.e.,

min
hi∈{−1,1}

E({hiui}Ni=1), where E({vi}Ni=1) =
∑
i6=j

1

‖vi − vj‖2
(1)

where E({vi}Ni=1) is the electrostatic energy of {vi}Ni=1. We propose Mixed In-
teger Linear Programming (MILP) to solve Eq. (2) as follows:

min
{hi},{xi,j}

∑
i<j

(
(1− xi,j)

1

‖ui − uj‖2
+ xi,j

1

‖ui + uj‖2

)
(2a)

s.t. hi = 0, 1, ∀i (2b)
xi,j ≤ hi + hj , xi,j ≤ 2− hi − hj , ∀i, j (2c)
xi,j ≥ hi − hj , xi,j ≥ hj − hi, ∀i, j, (2d)

where hi = 0, 1 indicates whether or not to flip the i-th sample, and xi,j is
constrained to represent hi xor hj . Thus, Eq. (2a) is the flipped energy if exactly
one of the two samples flipped (xi,j = 1), and it chooses the original energy
otherwise (xi,j = 0). Similarly, the multi-shell case P-P-M can be formulated as

min
{hs,i},{xs,i,t,j}

wS−1
S∑
s=1

1

N2
s

∑
i<j

(
1− xs,i,s,j
‖us,i − us,j‖2

+
xs,i,s,j

‖us,i + us,j‖2

)

+ (1− w) 1

N2

∑
s6=t

Ns∑
i=1

Nt∑
j=1

(
1− xs,i,t,j
‖us,i − ut,j‖2

+
xs,i,t,j

‖us,i + ut,j‖2

)
(3a)

s.t. hs,i = 0, 1, ∀s, i (3b)
xs,i,t,j ≤ hs,i + ht,j , xs,i,t,j ≤ 2− hs,i − ht,j , ∀s, i, t, j (3c)
xs,i,t,j ≥ hs,i − ht,j , xs,i,t,j ≥ ht,j − hs,i, ∀s, i, t, j (3d)

3 http://camino.cs.ucl.ac.uk/index.php?n=Man.Orderpoints
4 https://mrtrix.readthedocs.io/en/dev/reference/commands/dirorder.html

http://camino.cs.ucl.ac.uk/index.php?n=Man.Orderpoints
https://mrtrix.readthedocs.io/en/dev/reference/commands/dirorder.html
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where hs,i indicates whether or not to flip the i-th sample on the s-th shell.
MILP can be solved using branch and cut method. We adopt GULOBI [9] to
solve Eq. (2) and Eq. (3), which can provide a global solution or a reasonably
optimized solution within minutes. In practice, we adopt results of GUROBi
after optimizing for 10 minutes, which already provides good performance.

2.2 Optimize the ordering of a scheme (P-O)

Global Optimization. Given a scheme {ui}Ni=1, P-O is to optimize its ordering
to obtain a permuted scheme {uσi}Ni=1, such that it maximizes angular separation
for every partial subset {uσ1

, . . . ,uσk}, 2 ≤ k ≤ N . However, smaller number of
samples in a subset indicates larger covering radius, which results in difficulty
to design the weights. To avoid this issue, we design a loss function based on
spherical packing density 5, which normally does not change a lot with the
number of samples. Spherical packing density measures the fraction of spherical
space occupied by a given spherical packing. For a given subset {uσ1 , . . . ,uσk}
with covering radius θk = d({uσi}ki=1), its packing density is 2π(1−cos θk2 )2k

4π =

(1 − cos θk2 )k = (1 −
√

cos θk+1
2 )k ≈ (1 − cos θk+1

2 )k = 1−cos θk
2 k. For single shell

case P-O-S, we optimize the sum of approximated packing densities as

max
{θk},{xi,j}

N∑
k=2

1− cos θk
2

k (4a)

s.t. cos θk ≥ |uTi uj | − (2−
k∑

m=1

xi,m −
k∑

m=1

xj,m)M, ∀i < j, ∀2 ≤ k ≤ N (4b)

N∑
i=1

xi,j = 1, ∀j,
N∑
j=1

xi,j = 1, ∀i, xi,j = 0, 1,∀i, j (4c)

where xi,j = 1 indicates ui being ordered to the j-th position in the new scheme,
i.e., σj = i, and Eq. (4c) ensures that {σj} is indeed a permutation. In Eq. (4b),∑k
m=1 xi,m equals 1 if the ui is chosen as one of the first k samples in the new

scheme, and it is 0 otherwise. Thus, the constraint Eq. (4b) only takes effect if
and only if both ui and uj are chosen among the first k samples. Eq. (4) is an
MILP problem, when considering cos θk as a variable.

Similarly, we design a weighted mean of approximated packing densities for
multi-shell case P-O-M. Given Ns samples {us,i}Nsi=1 in S shells, s = 1, 2, . . . S,
we stack them together with the ordering {ui}Ni=1, N =

∑S
s=1Ns, and use Is to

5 https://en.wikipedia.org/wiki/Packing_density

https://en.wikipedia.org/wiki/Packing_density
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represent the s-th shell’s index set. Then, an MILP problem is formulated as

max
{θs,k},{xi,j}

wS−1
S∑
s=1

Ns
N

N∑
k=2

1− cos θs,k
2

k + (1− w)
N∑
k=2

1− cos θ0,k
2

k (5a)

s.t. cos θ0,k ≥ |uTi uj | − (2−
k∑

m=1

xi,m −
k∑

m=1

xj,m)M, ∀i < j, ∀k (5b)

cos θs,k ≥ |uTi uj | − (2−
k∑

m=1

xi,m −
k∑

m=1

xj,m)M, ∀i, j ∈ Is, ∀k, ∀s (5c)

N∑
i=1

xi,j = 1, ∀j,
N∑
j=1

xi,j = 1,∀i, xi,j = 0, 1,∀i, j, (5d)

where θ0,k is the covering radius of the first k samples, and θs,k is the covering
radius of the s-th shell among the first k samples.

Incremental Optimization. Eq. (4) has O(K3) numbers of constrains and
is computationally inefficient for problems with large sizes. Thus, we propose an
incremental optimization way to divide the entire task into sequences and solve
them one by one. The incremental optimization is: assuming we have already
optimized the first m orders {u1, . . . ,um}, we pick the next p samples from the
rest N −m samples and sort them to achieve maximum loss function.

max
{θk},{xi,j}

m+p∑
k=m+1

1− cos θk
2

k (6a)

s.t. cos θk ≥ |uTi uj | − (2−
k∑

l=m+1

xi,l −
k∑

l=m+1

xj,l)M, ∀m+ 1 ≤ i < j, ∀k (6b)

cos θk ≥ |uTi uj | − (1−
k∑

l=m+1

xi,l)M, ∀j ≤ m < i, ∀k (6c)

cos θk ≥ |uTi uj |, ∀1 ≤ i < j ≤ m, ∀m+ 1 ≤ k ≤ m+ p (6d)
N∑

i=m+1

xi,j = 1, ∀m+ 1 ≤ j ≤ m+ p,

m+p∑
j=m+1

xi,j ≤ 1, ∀m+ 1 ≤ i ≤ N (6e)

xi,j = 0, 1, ∀m+ 1 ≤ i ≤ N,∀m+ 1 ≤ j ≤ m+ p, (6f)

where covering radius θk is constrained by newly added points in (6b), by fixed
points and newly added points in Eq. (6c), and by fixed points in Eq. (6d).
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Similarly to Eq. (5), an MILP for the multi-shell case P-O-M is

max
{θs,k},{xi,j}

wS−1
S∑
s=1

Ns
N

m+p∑
k=m+1

1− cos θs,k
2

k + (1− w)
m+p∑
k=m+1

1− cos θ0,k
2

k (7a)

s.t. cos θ0,k ≥ |uTi uj | − (2−
k∑

l=m+1

xi,l −
k∑

l=m+1

xj,l)M, ∀m < i < j, ∀k (7b)

cos θs,k ≥ |uTi uj | − (2−
k∑

l=m+1

xi,l −
k∑

l=m+1

xj,l)M, ∀m < i < j, i, j ∈ Is,∀k (7c)

cos θ0,k ≥ |uTi uj | − (1−
k∑

l=m+1

xi,l)M, ∀j ≤ m < i, ∀k (7d)

cos θs,k ≥ |uTi uj | − (1−
k∑

l=m+1

xi,l)M, ∀j ≤ m < i, i, j ∈ Is, ∀k (7e)

cos θ0,k ≥ |uTi uj |, ∀1 ≤ i < j ≤ m,∀m+ 1 ≤ k ≤ m+ p (7f)

cos θs,k ≥ |uTi uj |, ∀1 ≤ i < j ≤ m, i, j ∈ Is, ∀m+ 1 ≤ k ≤ m+ p (7g)
N∑

i=m+1

xi,j = 1, ∀m+ 1 ≤ j ≤ m+ p,

m+p∑
j=m+1

xi,j ≤ 1, ∀m+ 1 ≤ i ≤ N (7h)

xi,j = 0, 1, ∀m+ 1 ≤ i ≤ n, ∀m+ 1 ≤ j ≤ m+ p. (7i)

For the incremental optimization, we use MILP in Eq. (6) and Eq. (7) in-
crementally to optimize the ordering for every p samples. In the k-th step, we
fix previous determined (k − 1)p samples, and pick the ordering of the next p
samples from rest N − (k − 1)p points.

Greedy ordering. Following the incremental strategy in Incremental EEM
(IEEM) [7] and Incremental generalized EEM (IGEEM) [2], which optimize elec-
trostatic energy, we propose a similar incremental greedy algorithm for P-O to
optimize covering radius and covering density. In the k-th step, with fixed k− 1
previous determined samples, we choose the k-th sample from the rest N − k
samples to be the best one that optimizes the loss function (using covering ra-
dius or covering density) with existing k − 1 points. We also add an extra step
to iterate through the point set to determine the first point chosen. Note that
the greedy method is just a special case of the incremental optimization method,
when we set p = 1 in Eq. (6). Thus, we could set the greedy optimization solution
as the initial ordering in the incremental optimization.

3 Experiments

3.1 Evaluation on P-P

For the problem P-P, we compare the proposed MILP method (called MILP-P-
S) with dirflip command from MRtrix on P-P-S. The experiment is evaluated
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Fig. 1: Optimization of Polarity (P-P-S). Comparison between dirflip and
the proposed MILP-P-S on single shell ElectricRepusion dataset. Left: covering
radius. Middle: electrostatic energy. Right: norm of mean direction vector.

Table 1: Optimization of Polarity (P-P-M).

shell1 shell2 shell3 combine
radius energy radius energy radius energy radius energy

Original HCP Scheme 10.79 1.285 10.34 1.215 10.73 1.231 2.381 1.743
dirflip 11.98 1.142 11.49 1.148 12.01 1.145 2.379 1.769
MILP-P-S 12.01 1.122 12.51 1.116 12.33 1.111 2.381 1.687
MILP-P-M 10.79 1.131 10.34 1.152 11.31 1.146 4.569 1.408

on ElectricRepusion dataset from CAMINO [5], which collects the best known
single shell sampling schemes using EEM. MILP-P-S can give globally optimal
result for schemes with no more than 26 points within 1 minutes and for schemes
with no more than 32 points within 10 minutes. Fig. 1 demonstrates the results
of covering radius, electrostatic energy which is the optimization goal of both
methods, and norm of mean direction vector which serves as an indicator for
asymmetry in dirstat command from MRtrix.

The multi-shell scheme with 90×3 samples in HCP is used to evaluate meth-
ods for the multi-shell problem P-P-M. dirflip in MRtrix cannot deal with
P-P-M, because it does not consider relationship among shells. Our method
MILP has the advantage of being possible to optimize three shells individu-
ally (MILP-P-S in Eq. (2)) and as a whole (MILP-P-M in Eq. (3)). Thus, we
use MILP-P-M to optimize multiple shells, and use MILP-P-S and dirflip to
optimize three shells individually. As shown in Table 1, MILP-P-S has larger
angular separation and smaller electrostatic energy for individual single shells,
while MILP-P-M results in a more uniform scheme in the combined shell.

3.2 Evaluation on P-O

For P-O-S, we compare orderpoints from camino, dirorder from MRtrix, and
our MILP approach (called MILP-O-S). MILP-O-S in Eq. (4) has the poten-
tial to obtain global optimal ordering solution when the problem size is small.
For sampling scheme with no more than 12 samples, MILP-O-S can obtain the
global optima within 5 minutes, while orderpoints can run for hours without
converging, and dirorder uses a greedy algorithm which cannot solve P-O-S
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Fig. 2: Optimization of Ordering (P-O-S).
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(b) Shell 1

0 50 100 150 200 250

Size of subset K
0

10

20

30

40

50

Co
ve

rin
g 
ra
di
us

MILP-O-M
camino
mrtrix

(c) Shell 2
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(d) Shell 3

Fig. 3: Optimization of Ordering (P-O-M).

globally. We compare MILP-O-S to orderpoints on the second shell (b = 2000
s/mm2) of the multi-shell HCP scheme in Fig. 2. The left part of Fig. 2 shows
that MILP-O-S achieves largest separation angles, and the right part of Fig. 2
shows that MILP-O-S has near optimal electrostatic energies.

For P-O-M, we use the multi-shell HCP scheme with 90×3 samples for exper-
iments. Since both orderpoints and dirorder are incapable of taking multiple
shells into consideration. we apply these two methods to the combined shell with
all 270 samples. Our MILP-O-M in Eq. (7) can naturally deal with multiple shell
scenario. From the result in Fig. 3, since orderpoints and dirorder can only
consider the combined shell, they outperform MILP-O-M in combined shell.
However MILP can consider all shells simultaneously and performs significantly
better than other methods in individual shells. Moreover, orderpoints only
chooses the first 59 samples all from the first shell, which is not an acceptable
multi-shell sampling ordering for reconstruction.

We perform non-negative spherical deconvolution (NNSD) [3] to evaluate the
reconstructed fODFs and their peaks for P-M-O. The spherical harmonic order is
set as 8. We evaluate the effect of ordering by choosing the first 60 samples from
ordering of 90×3 samples as an illustration of scan interruption. Three partially
scanned schemes with 60 samples from MILP-O-M, orderpoints and dirorder
are evaluated. We display the resulting fODF fields together with detected peaks
and with GFA images as backgrounds in Fig. 4 . Peaks are detected from the
fODFs with GFA higher than 0.3. As can be seen in Fig. 4, both orderpoints and
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(a) Full scheme (b) MILP-O-M (c) CAMINO (d) MRtrix

Fig. 4: Comparison of reconstruction results using partial scan data.

dirorder have obvious flaw while our MILP-O-M yields the best reconstruction
result, closer to the results by using full sampled data.

4 Conclusion

To the best of our knowledge, this is the first work to optimize the polarity and
the ordering of an existing single or multi-shell sampling scheme using Mixed
Integer Linear Programming (MILP). The proposed MILP formulations could
obtain global optimal solutions for problems with small sizes, or sufficiently
good solutions in 10 minutes. Experiments demonstrate that our proposed MILP
methods achieves larger separation angles and lower electrostatic energy in single
and multiple shell cases, resulting better reconstruction results, compared with
existing approaches in commonly used software (i.e., CAMINO and MRtrix).
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