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Abstract. Nuclei segmentation in cervical cell images is a crucial tech-
nique for the automatic diagnosis of cervical cell pathology. The current
state-of-the-art (SOTA) nuclei segmentation methods often require sig-
nificant time and resources to provide pixel-level annotations for training.
To reduce the labor-intensive annotation costs, we propose DES-SAM, a
box-supervised cervical nucleus segmentation network with strong gener-
alization ability based on self-distillation prompting. We utilize Segment
Anything Model (SAM) to generate high-quality pseudo-labels by inte-
grating a lightweight detector. The main challenges lie in the poor gener-
alization ability brought by small-scale training datasets and the large-
scale training parameters of traditional knowledge distillation frame-
works. To address these challenges, we propose leveraging the strong
feature extraction ability of SAM and a self-distillation prompting strat-
egy to maximize the performance of the downstream nuclear seman-
tic segmentation task without compromising SAM’s generalization. Ad-
ditionally, we propose an Edge-aware Enhanced Loss to improve the
segmentation capability of DES-SAM. Various comparative and gen-
eralization experiments on public cervical cell nuclei datasets demon-
strate the effectiveness of the proposed method. The code is available at
https://github.com/CVIU-CSU/DES-SAM.

Keywords: Weakly-supervised Learning · Knowledge Distillation · Seg-
ment Anything Model (SAM) · Nuclei Segmentation.

1 Introduction

The morphological and visual characteristics of cervical cell nuclei, such as com-
prehensive optical density, average size, and heterogeneity, play a significant role
in determining the malignancy degree of tumors. These features can be calcu-
lated after segmenting individual nuclei. Therefore, nuclear image segmentation
is a crucial task for analyzing cervical images. Most of the previous cell nucleus
segmentation methods [2,3,27] are fully supervised, which typically require large-
scale datasets with well-annotated pixel-level labels, making it expensive and

https://github.com/CVIU-CSU/DES-SAM
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Fig. 1. A Comparison of Three Box-Supervised Image Segmentation Paradigms.

time-consuming. Various weakly-supervised nuclear segmentation methods have
been proposed to reduce annotation costs, learning from point [20], scribble [12],
or bounding box [16,26] annotations. Among these methods, weakly-supervised
approaches leveraging bounding box annotations often achieve a favorable trade-
off between performance and annotation costs.

In order to learn from box annotations, previous box-supervised image seg-
mentation methods [11,13,24,26] have used pseudo-label or multiple instance
learning from box annotations to achieve performance similar to fully super-
vised methods. Most of them adhere to two paradigms, as depicted in Fig. 1.
One prevalent paradigm following the knowledge distillation framework is ex-
emplified in works such as [11,16,26], as illustrated in Fig. 1(a). These methods
often use traditional approaches to first generate noisy pseudo-labels to train
the teacher, and then use the teacher’s outputs as pseudo-labels to train the stu-
dent. However, the generated pseudo-labels often exhibit low quality and noise,
and training the entire network with such noisy labels can significantly degrade
performance. Another paradigm is shown in Fig. 1(b) which is often based on
affinity pairwise loss, exemplified by BoxSnake [25] and BoxLevelSet [13]. How-
ever, this method is prone to misinterpreting intricate textures found in images
and requires training the entire network, also leading to suboptimal segmentation
performance.

To address shortcomings in existing paradigms, we propose DES-SAM, an
efficient cervical cell nuclear segmentation network illustrated in Fig. 1(c). We
follow the teacher-student architecture but utilize a frozen, powerful vision foun-
dation model to extract features effectively. Based on a self-distillation strategy,
we then employ Parameter-Efficient Fine-Tuning (PEFT) to adapt the founda-
tion model to the box-supervised cell nucleus segmentation task. Our approach
builds upon the Segment Anything Model (SAM) [8], pretrained on 11 million
images and demonstrating strong performance on various downstream tasks.
Specifically, we use SAM’s image encoder as the feature extractor and extend
SAM by introducing an additional detection branch to automatically produce
box prompts, which are then fed into SAM’s mask decoder to generate high-
quality segmentation pseudo-labels. Furthermore, due to the limited data for
cervical cell nucleus segmentation images, we use the original SAM’s mask head
as a teacher to fine-tune the student mask head, which mirrors the teacher’s
architecture but appends a few learnable prompts to the output tokens. This
self-distillation strategy effectively transfers accumulated knowledge from the
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Fig. 2. The overview of our proposed method, including Multi-scale Light-weight De-
tection module and Self-distillation Prompting strategy.

teacher network to the cervical cell nucleus segmentation task. Additionally, we
introduce an Edge-aware Enhanced Loss based on contrastive learning to refine
the segmentation boundary of the cell nucleus. We conducted comparative and
generalization experiments on the publicly available CNSeg dataset [28] and the
2014 ISBI Challenge dataset [17] to validate our method’s performance. The
results showcase the effectiveness and robustness of DES-SAM.

2 Method

An overview of our DES-SAM framework is shown in Fig. 2. We extend SAM [8]
to the box-supervised nuclear segmentation task by first introducing an addi-
tional Multi-scale Lightweight Detection module to automatically generate the
box prompts, thereby eliminating SAM’s reliance on additional input prompts.
We then propose a self-distillation prompting strategy and an Edge-aware En-
hanced Loss to perform PEFT of SAM, enhancing its capability for nucleus
segmentation in cervical cells. We will elaborate on each component in the sub-
sequent subsections.

2.1 Multi-scale Lightweight Detection

As an interactive segmentation method, SAM [8] often requires additional in-
puts such as points or box prompts in addition to the input image. Inspired by
the Regional Proposal Network in Faster R-CNN [21] to automatically generate
proposals, we extend SAM to our box-supervised nuclear segmentation task by
integrating an additional Multi-scale Lightweight Detection module into SAM
to automatically generate the box prompts. Our lightweight detection module is
borrowed from ViTDet [15]. Specifically, we use the image encoder from SAM as
the backbone network, with parameters frozen, obtaining richer image features
while avoiding a large number of learnable parameters. Based on the single-scale
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extracted features, we build a simple multi-scale feature pyramid using strided
convolutions and deconvolutions to address the multiscale variations of the target
cell nucleus, replacing the feature pyramid network in traditional object detec-
tion frameworks. The frozen backbone helps our DES-SAM transfer the strong
segmentation capability of SAM [8] to downstream detection tasks using simple
biases. We then simply attach a detection head based on Faster R-CNN [21] and
the entire detection module is supervised by the detection loss

Ldect = L1(Y
∗
B , YB) + LBCE(Y

∗
C , YC), (1)

where L1(·, ·) is the mean absolute error loss used to supervise the prediction
boxes Y ∗

B with the ground truth bounding boxes YB , while LBCE(·, ·) denotes
the binary cross-entropy loss used to supervise the class scores Y ∗

C with labels
YC .

2.2 Self-distillation Prompting Strategy

We propose further fine-tuning SAM’s mask head to enhance its performance in
our cervical cell nuclear segmentation task. However, this task often encounters
limitations of insufficient data and a single data source, with excessive fine-tuning
resulting in suboptimal performance, particularly when tested on datasets with
domain shifts. To address this issue, we employ a simple yet effective PEFT
method, namely prompt tuning [6,14], and propose a self-distillation prompting
strategy that retains as much of the knowledge accumulated in SAM as possible,
to finetune the SAM’s mask head for the cervical cell nucleus segmentation task.

Concretely, unlike traditional knowledge distillation, as shown in Fig. 2, our
teacher-student network shares the frozen backbone and even the frozen mask
decoder that takes both image features and box prompt tokens concatenated
with output tokens as inputs. The box prompt tokens are obtained by feeding
the box into SAM’s prompt encoder. Unlike the teacher network, which directly
uses the original SAM’s output tokens and ground-truth box prompt tokens, the
student network takes the predicted box prompt tokens obtained by feeding the
output box of our lightweight detection module into SAM’s prompt encoder and
appends a few learnable prompts to the output tokens. The learnable prompts
are highlighted as visual prompts [6], which are supervised by the following
distillation loss

Ldistill = LBCE(Y
t
np, Y

s
np) + LDICE(Y

t
np, Y

s
np), (2)

where LDICE(·, ·) denotes the dice loss and Y t
np and Y s

np are the predicted results
of teacher and student respectively, which are obtained by

Y t
np = D (FI , P (YB), T ) ,

Y s
np = D

(
FI , P (Y ∗

B), T ⊕ T̃
)
,

(3)

where D(·, ·, ·) is SAM’s mask decoder, which takes three kinds of inputs includ-
ing the image feature map FI , prompt tokens output by SAM’s prompt encoder
P (·), SAM’s output tokens T along with our additional learnable visual prompt
T̃ . The symbol ⊕ denotes the concatenation operation.
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2.3 Edge-aware Enhanced Loss

We further improve the segmentation performance of our DES-SAM by by con-
sidering that object boundaries typically exist within regions of local color vari-
ations in images. Inspired by [13,25], we propose the following Edge-aware En-
hanced Loss, which is a weighted combination of local pairwise loss Llp [25] and
global pairwise loss Lgp [13]

Ledge = αLlp + βLgp, (4)

where α and β are the weight hyperparameters. The local pairwise loss Llp is
used to facilitate the alignment between the predicted mask and the nucleus edge.
Unlike BoxSnake [25], which rasterizes polygons predicted from the model to ob-
tain masks, our method associates proposals and masks through box prompts.
Furthermore, as there may be color variations in local regions of the image, train-
ing with only the local pairwise loss Llp may produce unexpected segmentation
boundaries. Therefore, we also utilize the global pairwise loss Lgp [13] to reduce
the effect of local noise.

In summary, the overall loss can be represented by

Ltotal = λdectLdect + λdistillLdistill + λpairwiseLedge, (5)

where λdistill, λdect and λpairwise are modulation weights for each loss term.

3 Experiments

3.1 Experimental Setting

Datasets. We conduct experiments on the CNSeg dataset [28], which contains
124,353 annotated cell nuclei collected from 1,530 patients, making it the largest
publicly available dataset in the field of cell nucleus segmentation to our best
knowledge. The CNSeg dataset [28] is divided into three subsets: PatchSeg,
ClusterSeg, and DomainSeg. The PatchSeg subset includes small patch images
cropped from whole-slide images under complex conditions. The ClusterSeg sub-
set is further divided into three subsets: Sample, Normal, and Difficult, consisting
of nuclear images with overlapping clusters. The DomainSeg subset includes new
domain images, which are divided into the TargetA and TargetB subsets. Since
the PatchSeg and ClusterSeg subsets provide training and testing splits, follow-
ing [28], we use these subsets for training and comparative testing. Furthermore,
we use the model trained on ClusterSeg to test generalization on DomainSeg.

In addition to the CNSeg dataset, we also conduct generalization experi-
ments on the 2014 ISBI Challenge dataset [17], which consists of 16 EDF real
cervical cytology images and 945 synthetic images. Following the public chal-
lenge settings, we perform the generalization evaluation on the 2014ISBI test set
consisting of 900 synthetic images.
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Table 1. Comparison with the weakly-supervised methods on the PatchSeg Test, Clus-
terSeg Test. The ‘Sup.’ column indicates the supervision type: ‘P’ for point, ‘S’ for
scribble, and ‘B’ for bounding box.

Model Sup. PatchSeg ClusterSeg ParamsDICE AJI PQ DICE AJI PQ
WSPP [20] P 62.99 42.47 48.64 68.37 49.51 48.11 70.59M

Scribble2Label [12] S 77.62 59.26 53.71 76.78 48.21 47.13 32.25M
BoxInst [24] B 82.23 67.73 66.43 80.61 65.74 60.92 32.28M

DiscoBox [11] B 82.35 67.82 65.29 81.07 67.01 61.10 43.87M
WNS [16] B 83.60 70.23 68.05 75.38 59.92 61.19 41.72M

BoxLevelSet [13] B 76.92 60.35 53.82 83.80 71.04 67.57 33.98M
MAL [10] B 78.37 61.65 57.16 80.39 65.72 61.93 43.87M

BoxSnake [25] B 84.65 71.40 70.16 84.52 71.90 70.59 45.90M
SAM-Base [8] - 41.09 12.99 30.47 57.92 39.04 42.32 -

DES-SAM (ours) B 83.37 69.99 69.85 83.58 70.02 70.16 18.34M

Evaluation Metrics. To comprehensively evaluate the performance of our
DES-SAM for nuclei segmentation, we use three widely-used evaluation met-
rics [3,28], including the Dice Coefficient (DICE), Aggregated Jaccard Index
(AJI), and Panoptic Quality (PQ).
Implementation Details. We use SAM-Base [8] to initialize the image encoder
and mask head of the network, and following VitDet [15], we adopt the Faster R-
CNN detection head [21], performing detection on feature maps at four different
scales. For loss weights, we set α, β, λdistill, λdect and λpairwise to 1.0, 0.001,
1.0, 1.0, 1.0 respectively. Our experiments start with an initial learning rate of
2.0 × 10−3, using SGD optimizer for 50 epochs. Unless otherwise specified, the
reported results are averaged over three trials.

3.2 Comparison to SOTA Methods

Comparison to Weakly-supervised Methods. We first conduct compara-
tive training and testing experiments on the PatchSeg and ClusterSeg subsets
with eight weakly-supervised methods, including point-supervised WSPP [20],
scribble-supervised Scribble2Label [12], and six box-supervised methods: Box-
Inst [24], DiscoBox [11], WNS [16], BoxLevelSet [13], MAL [10], and BoxS-
nake [25], along with the unsupervised SAM-Base method [8]. Table 1 reports
the comparative segmentation performance along with the trainable parameters
(Params). As we can see, our DES-SAM exceeds MAL [10] and DiscoBox [11],
which excel in natural image settings, and achieves performance on par with the
SOTA BoxSnake [25]. It is noteworthy that our approach significantly reduces
the number of trainable parameters, accounting for only 40% of those used in
the BoxSnake [25]. This indicates that our model achieves an excellent trade-off
between performance and parameter efficiency for cervical cell nuclear segmen-
tation.

We further conduct experiments to compare the generalization performance
of each method. Following [28], we directly perform comparative generaliza-
tion testing of the model trained on ClusterSeg on the TargetA, TargetB, and
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Table 2. Generalization test on TargetA Test, TargetB Test and 2014ISBI Test.

Model Sup. TargetA TargetB 2014ISBI
DICE AJI PQ DICE AJI PQ DICE AJI PQ

WSPP [20] P 52.80 32.15 31.76 62.24 39.24 42.52 79.88 66.48 64.91
Scribble2Label [12] S 54.43 23.80 23.24 68.13 41.47 42.83 68.89 49.27 43.79

BoxInst [24] B 72.23 52.73 47.68 72.36 54.33 52.82 34.45 18.10 26.02
DiscoBox [11] B 72.40 53.84 49.30 74.97 57.84 52.21 55.25 35.81 43.49

WNS [16] B 74.68 57.66 58.07 79.14 63.12 65.39 61.23 40.07 42.60
MAL [10] B 71.29 51.94 49.37 73.67 55.07 50.05 42.69 20.31 32.80

BoxSnake [25] B 74.60 56.82 56.92 77.37 63.09 64.09 43.01 22.09 25.35
SAM-Base [8] - 50.66 32.67 33.46 54.88 33.41 42.61 30.67 8.43 25.86

DES-SAM (ours) B 76.15 59.07 60.45 76.58 59.23 63.63 83.98 71.37 80.81

2014ISBI Test datasets. Table 2 lists the detailed test results, demonstrating that
our method achieves overall optimal performance on various metrics across the
three subsets. Specifically, on the TargetA subset, our method improved over-
all performance by 1.47% in DICE, 1.41% in AJI, and 2.38% in PQ compared
to the best existing methods, while on the TargetB subset, it achieved results
nearly equivalent to the current best performance. Similarly, on the 2014ISBI
dataset, our method improved performance by 4.10% in DICE, 4.89% in AJI,
and 15.90% in PQ. This shows the strong generalization ability of our DES-SAM
and demonstrates the effectiveness of the self-distillation prompting strategy in
improving nucleus segmentation performance on downstream tasks while inher-
iting the powerful generalization ability of SAM.

Table 3. Comparison of model performance with fully supervised methods on the
CNSeg dataset. ‘S’ and ‘I’ stand for semantic segmentation and instance segmentation
methods, respectively.

Model Task ClusterSeg Difficult Normal
AJI PQ AJI PQ AJI PQ

Blend Mask [1] I 68.34 69.82 62.67 65.53 70.00 71.08
CondInst [23] I 67.72 68.07 62.52 64.37 68.62 69.15
BC-Net [7] I 67.65 69.39 60.63 64.29 69.71 70.88

Mask RCNN [5] I 69.47 70.57 64.29 66.31 71.00 71.82
U-Net [22] S 59.53 58.62 51.15 50.24 61.99 61.08

U-Net++ [29] S 61.91 61.39 54.64 53.91 64.04 63.58
Attention U-Net [18] S 61.22 61.27 53.74 53.16 63.41 63.65

CE-Net [4] S 60.48 60.39 51.46 51.72 63.13 62.94
Joint segmentation [19] S 56.16 56.03 45.83 45.95 59.19 58.98

NucleiSegNet [9] S 60.93 60.24 54.03 52.15 62.95 62.62
AL-Net [27] S 69.58 69.09 63.66 63.09 71.32 70.85

DES-SAM (ours) S 70.02 70.16 65.23 66.39 68.47 68.52

Comparison to Fully-supervised Methods. We also conduct comparative
experiments between our method and various pixel-level fully-supervised meth-
ods for cervical cell nucleus segmentation. We train and test on the ClusterSeg
dataset, comparing the performance on Difficult and Normal datasets in de-
tail, as shown in Table 3. Surprisingly, the overall performance of our DES-SAM
surpasses most classic fully-supervised segmentation networks like U-Net [22], U-
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Table 4. Ablation study results on the CNSeg dataset.

prompt mask_loss pairwise_loss PatchSeg ClusterSeg
DICE AJI PQ DICE AJI PQ
83.13 69.75 69.71 83.55 69.98 70.16

✓ ✓ 83.18 69.88 69.78 83.48 69.98 69.55
✓ ✓ ✓ 83.37 69.99 69.85 83.58 70.02 70.16

Table 5. Generalization test of ablation study on the CNSeg dataset.

prompt mask_loss pairwise_loss TargetA TargetB
DICE AJI PQ DICE AJI PQ
76.30 59.31 60.98 76.31 58.62 63.93

✓ ✓ 76.39 59.50 60.17 76.57 59.18 63.43
✓ ✓ ✓ 76.15 59.07 60.45 76.58 59.23 63.63

Net++ [29] and CondInst [23]. The experimental results confirm that our model
can achieve performance comparable to fully-supervised segmentation methods.

3.3 Ablation studies

We then conduct several ablations on the CNSeg dataset to evaluate the effec-
tiveness of key settings in our DES-SAM model. The model is trained and tested
on the PatchSeg and ClusterSeg subsets, with additional generalization testing
on the DomainSeg subset.
Self-distillation Prompting. We conduct ablation experiments to evaluate
the effectiveness of the self-distillation prompting strategy. As shown in Ta-
bles 4 and 5, we observed performance improvements in PatchSeg and ClusterSeg
datasets when the model incorporated this strategy, along with enhanced gener-
alization capability. Additionally, the supplementary materials list the model’s
generalization performance when trained on PatchSeg, which also showed sig-
nificant improvement. These results indicate that the self-distillation prompting
strategy enables the model to achieve performance gains with minimal parameter
training while maintaining the generalization ability of SAM.
Edge-aware Enhanced Loss. We also conduct ablation experiments to eval-
uate the effectiveness of the Edge-aware Enhanced Loss. Our model showed im-
provements in both performance and generalization on PatchSeg, as indicated
in the second and third rows of Tables 4 and 5. Additionally, generalization
performance testing on the model trained on PatchSeg, presented in the sup-
plementary materials, demonstrated significant enhancement with the inclusion
of edge-aware enhancement loss. These results collectively suggest that DES-
SAM learned more about nuclear boundaries and universally applicable nuclear
features through edge-aware enhancement loss supervision.

4 Conclusion

In this paper, we propose DES-SAM, a detection-based, box-supervised method
for cervical cell nuclei segmentation utilizing knowledge distillation. The detec-
tion module of DES-SAM leverages the powerful feature extraction capability of
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SAM to automatically generate cervical nucleus region proposals, thereby elim-
inating the need for additional input prompts for SAM. Additionally, by intro-
ducing a self-distillation prompting strategy, DES-SAM extends SAM’s general-
ization ability to the box-supervised nucleus segmentation task, addressing the
challenges of insufficiently annotated and limited labeled cell nuclei in cervical
datasets. Furthermore, we introduce an Edge-aware Enhancement Loss to im-
prove segmentation performance at nucleus boundaries. Our DES-SAM achieves
an excellent balance between performance and generalization ability with very
few training parameters. While our study shows promising results, future re-
search is needed to explore more effective prompting strategies and extend them
to other types of cell nucleus segmentation.
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