
Multimodal Learning for Embryo Viability
Prediction in Clinical IVF

Junsik Kim1, Zhiyi Shi2, Davin Jeong1, Johannes Knittel1

Helen Y. Yang1, Yonghyun Song1, Wanhua Li1, Yicong Li1

Dalit Ben-Yosef4, Daniel Needleman1,3, and Hanspeter Pfister1

1 Harvard University, Cambridge MA 02138, USA
2 Carnegie Mellon University, PA 15213, USA

3 Flatiron Institute, New York, NY 10010, USA
4 Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

jskim@seas.harvard.edu

Abstract. In clinical In-Vitro Fertilization (IVF), identifying the most
viable embryo for transfer is important to increasing the likelihood of a
successful pregnancy. Traditionally, this process involves embryologists
manually assessing embryos’ static morphological features at specific in-
tervals using light microscopy. This manual evaluation is not only time-
intensive and costly, due to the need for expert analysis, but also in-
herently subjective, leading to variability in the selection process. To
address these challenges, we develop a multimodal model that leverages
both time-lapse video data and Electronic Health Records (EHRs) to
predict embryo viability. One of the primary challenges of our research
is to effectively combine time-lapse video and EHR data, owing to their
inherent differences in modality. We comprehensively analyze our multi-
modal model with various modality inputs and integration approaches.
Our approach will enable fast and automated embryo viability predic-
tions in scale for clinical IVF.

Keywords: Multimodal Learning · Time-lapse Video · EHR · Human
Embryos · In-Vitro Fertilization.

1 Introduction

Infertility affects approximately one in six couples globally [7], propelling many
towards assisted reproductive technologies such as In-Vitro Fertilization (IVF).
IVF entails stimulating patients to produce multiple oocytes, which are then re-
trieved, fertilized in vitro, and the resultant embryos cultured. Selected embryos
are transferred to the maternal uterus to initiate pregnancy, with surplus vi-
able embryos cryopreserved for future attempts. Although transferring multiple
embryos might increase the likelihood of conception, it simultaneously elevates
the risk of multiple pregnancies, which are linked to heightened maternal and
neonatal morbidity and mortality [25]. Consequently, there is a pressing need
to limit embryo transfer to a single, optimally selected embryo to maximize the
chances of a healthy singleton birth [20] which remains challenging [26].
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The prevailing practice in embryo selection primarily relies on morphological
analysis through microscopic imaging. Embryos undergo a series of developments
post-fertilization, transitioning through stages from pronuclei alignment to blas-
tocyst formation, with clinicians traditionally scoring embryos based on discrete,
manually observed morphokinetic features such as cell number, cell shape, cell
symmetry, the presence of cell fragments, and blastocyst appearance [8]. Nowa-
days, many clinics adopt time-lapse microscopy incubators to capture movies
of embryos continuously without disturbing their culture conditions [3]. Despite
this advancement, the analysis of these videos remains manual, which is labor-
intensive and subjective.

Numerous studies have focused on predicting and analyzing the morpholog-
ical features of embryos using images or videos, covering aspects like blastocyst
size [15], blastocyst grade [10,16,17], cell boundaries [27,13], cell counting [14,18],
and developmental stage prediction [23]. Subsequently, a comprehensive pipeline
employing deep learning models was developed to predict five key morphologi-
cal features of embryos [19], yielding outputs in the forms of classification, re-
gression, and segmentation. These key morphological features are shown to be
correlated to the live birth result of IVF treatments when converted to inter-
pretable features by heuristic post-processing [32], such as the timing of stage
transitions, cell symmetry index, and zona thickness. However, solely relying
on the converted features may overlook more intricate and nuanced details of
embryo development captured in videos. Additionally, these approaches mainly
focus on visual features from time-lapse imaging and do not integrate data from
Electronic Health Records (EHRs), which contain important variables such as
patients’ health information and treatment details.

In this work, we introduce a multimodal model for predicting embryo via-
bility, leveraging both time-lapse videos and Electronic Health Records (EHRs).
Although there has been an attempt to utilize image and EHR modalities [22],
their focus is not on multimodal integration, and they do not use video data.
A major challenge in multimodal learning is the effective integration of diverse
modal types to ensure balanced training without modality bias [31]. We explore
different multimodal integration methods. Inspired by the previous works, our
multimodal model not only incorporates time-lapse videos and EHR data but
also includes morphological [19] and interpretable features [32] as additional in-
puts. Through comprehensive experiments with diverse combinations of modali-
ties, we analyze different multimodal integrations and demonstrate the effective-
ness of our multimodal model for embryo viability prediction in clinical IVF.

2 Dataset

We collected data from 3,695 IVF treatment cycles with 24,027 embryos imaged
every 20 minutes up to the first five days of development where each image size
is 500 × 500. This corresponds to approximately 6 million images of embryos.
Additionally, electronic health record (EHR) data, including patient informa-
tion, treatment information, and live birth records as a treatment outcome, are
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Fig. 1. Overview of our multimodal model. Video data is first tokenized into patches
per frame. Then, the spatial transformer encodes per frame embeddings. The Multi-
modal transformer inputs both frame embeddings and an EHR embedding to output
a multimodal feature. Lastly, the MLP head predicts embryo viability based on the
multimodal feature. If additional inputs in the form of video or tabular are available,
such as outputs from Embryo-vision [19] or BlastAssist [32], they are processed in a
similar manner as the video input and the EHR input respectively.

collected. Among the collected data samples, we curate the multimodal dataset
with embryos that have both video and EHR modalities with treatment out-
comes. Our multimodal dataset consists of a total of 1700 treatment cycles with
3318 embryos. Out of 1700 treatments, 260 treatments are successful with equal
or more than one live birth. It’s important to note that each treatment cycle
fertilizes multiple embryos, and only healthy embryos are selected for transfer.
Some cycles freeze all embryos for future use rather than immediate transfer.
Therefore, the number of embryos that have the treatment outcome is limited
compared to the scale of the raw data collected.

3 Method

In this work, we explore two different directions to integrate multimodal data for
embryo viability prediction. One is a transformer-based multimodal model where
EHRs and videos are processed end-to-end, as shown in Fig. 1. Another approach
is to take a two-stage approach where the video data is first processed to extract
morphological features in tabular format using off-the-shelf methods [19,32], and
then input to the tabular models with EHRs as shown in Fig. 2. Although
the two-stage approach can be modeled by a single tabular modality model, it
is multimodal by nature as video data is converted and included in a tabular
format.
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Fig. 2. Overview of the two-stage approach. First, morphological features v′ are ex-
tracted from videos using [19]. Then, the extracted features v′ are converted to in-
terpretable features e′ in tabular format using [32]. Lastly, the tabular model inputs
EHRs e and interpretable features e′ to predict embryo viability.

Although there are several multimodal transformer models [28,1,21,24] avail-
able, it is not straightforward to apply them to embryo viability prediction
as they assume samples in each modality has one-to-one correspondence. In
our case, videos are embryo-specific, but EHRs are treatment-specific, which is
shared across embryos within the same treatment cycle. Therefore it is difficult
to directly apply cross-modal correspondence or contrastive learning as in other
multimodal learning approaches. To this end, we propose a multimodal trans-
former that is based on a video transformer architecture with modifications to
allow multimodal inputs.

Input modalities Let Tn = {vn, en} be a multimodal sample in n-th treatment
cycle in our multimodal dataset, where vmn ∈ RT×H×W×C denotes a time-lapse
video of m-th embryo fertilized in n-th treatment cycle and en ∈ RC denotes
an EHR containing information of the patient and treatment applied. Note that
time-lapse videos are embryo-specific, but EHR data corresponds to the treat-
ment cycle; thus, they are not embryo-specific. Our goal is to predict embryo
viability formulated as y = n births

n transferred , where viability is defined as the num-
ber of births over the number of embryos transferred. The number of embryos
transferred at each treatment cycle varies depending on various factors, such as
the number of embryos fertilized, embryo quality examined by embryologists, or
the patient’s medical history.

Other than video data, we can additionally utilize morphological embryo fea-
tures extracted from videos by off-the-shelf methods, e.g ., Embryo-vision [19],
and BlastAssist [32]. Embryo-vision outputs a set of features v

′m
n,t from a video

frame vmn,t, which are zona semantic segmentation sz, blastomere instance seg-
mentation sb, pronuclei instance segmentation sp, fragmentation regression r,
and stage classification c. BlastAssist further converts the morphological fea-
tures into a set of interpretable features e′ such as zona well thickness, stage
transition timing, and cell symmetry index. For more details, refer to the sup-
plementary and [19,32].

Video transformer Videos are significantly larger than the size of other modal-
ities. Directly applying spatio-temporal attention to a video would result in a
large number of tokens, which require an immense amount of memory and com-
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putation. Inspired by ViViT [4], we design a transformer in a factorized encoder
structure where spatial attention is applied first, followed by temporal attention.

For spatial attention, we first tokenize each frame vmn,t ∈ RH×W×C to a set

of tokens by extracting non-overlapping image patches xi ∈ Rh×w×C and then
apply linear projection E. Then, a set of embedded frame tokens and a learnable
class token are added to a learnable positional embedding p and passed through
a transformer consisting of a sequence of L transformer layers to output a frame-
level representation.

z = [zcls,Ex1, . . . ,ExN ] + p (1)

Each transformer layer ℓ consists of Multi-Headed Self-Attention [30], layer nor-
malisation(LN) [5], and MLP blocks as follows:

yℓ = MSA(LN(zℓ)) + zℓ (2)

zℓ+1 = MLP(LN(yℓ)) + yℓ (3)

The output token zLcls embeds frame-level representation. Temporal attention is
performed similarly to spatial embedding by applying L′ transformer layers on
a set of frame tokens h,

h = [hcls, z
L
cls,1, . . . , z

L
cls,T ] + t (4)

where hcls is a learnable class token in temporal attention, and t is a learnable
temporal embedding.

Multimodal Transformer We modify a video transformer to allow multi-
modal inputs. We embed EHR data e by linear projection and then append
to the frame tokens. If we have additional features in a tabular format, e.g .,
interpretable features e′, it is processed in the same way as EHR data. With
EHR data tokens, the temporal attention input in Eq. (4) becomes multimodal
attention input as follows,

h = [hcls, h1, . . . , hT ,Pe,P′e′] + t (5)

where ht is a frame token at frame t, P and P′ are linear projections for e and e′

respectively. When only video is input to the model, a frame token ht becomes
zLcls,t as in Eq. (4). Additionally, we can incorporate more per-frame modality
inputs from Embryo-vision to enrich the representation of a frame token ht. The
Embryo-vision outputs a set of morphological features v′ = {sz, sb, sp, r, c} where
the first three features are segmentation masks and the latter two are vectors.
The mask format features are passed to the spatial attention and processed simi-
larly to the video input. For simplicity, let’s denote spatial transformer operation
as fs : RH×W×C → Rd. When a video is input, fs(vt) equals z

L
cls,t as in Eq. (4).

When multiple video modalities are available, the frame token ht is formulated
as a concatenation of tokens from different modalities as follows,

ht = [fs(vt), fs(sz,t), fs(sb,t), fs(sp,t),E
′[rt, ct]] (6)

where E′ is a linear projection applied to the concatenation of rt and ct.



6 J. Kim et al.

Table 1. Number of successful and failed treatments and embryos in each split in the
form of “number of embryos” / “number of treatments.”

Split Total Success Fail

Train 2617/1360 362/208 2255/1152
Val 327/170 54/26 273/144
Test 342/170 54/26 288/144

4 Experiments

Implementation details For spatial attention, we use the pre-trained DeiT-
Ti [29] as a spatial transformer without fine-tuning. We attempted to fine-tune
a spatial transformer, but it resulted in worse performance due to the limited
number of labeled samples. For temporal or multimodal attention, we use 4
transformer layers. Input frames are resized from 500× 500 to 224× 224. Videos
are clipped to have a maximum of 360 frames since this corresponds to the
first 5 days of observation, where each frame is captured at 20-minute intervals.
To enable memory-efficient training, we subsample every 4 frames, resulting in
90 frames per video. Flip and rotation are applied to videos and masks for
augmentation. The batch size is set to 4, the learning rate is set to 1e-4, and the
model is trained until the validation loss converges. MLP head consists of two
fully connected layers with ReLU activation in between. Huber loss [12] is used
to train the multimodal transformer. The experiments are performed using one
A100 GPU.

Experiment setup We randomly split train, validation, and test splits to an
8:1:1 ratio while preserving the success rate within each split. For evaluation,
we use two performance metrics: the area under the receiver operating char-
acteristic curve (ROCAUC) and F1-Score. We evaluate two different scenarios:
embryo viability prediction and treatment success prediction. Each treatment
has equal to or more than one embryo transferred. In the embryo viability pre-
diction scenario, we set the ground truth label to ’1’ for all embryos transferred
(instead of n births

n transferred ) if the treatment is successful, then compute AUCROC
and F1-Score. In treatment success prediction, we sum the viability predictions
of embryos transferred together and then calculate AUCROC and F1-Score. For
F1-Score measurement, we use 0.155 as a threshold for embryo viability predic-
tion and 0.56 for treatment success prediction. F1-Score quantifies the precision
of predictions at a fixed threshold, whereas AUCROC measures capability in
assessing the relative quality of the samples.

Two-stage approach We compare our multimodal transformer with two-stage
approaches using two transformer based methods: TabTransformer [11] and Tab-

5 The treatment cycle with the highest number of embryos transferred is 5. Therefore,
embryo viability values in successful treatments range from 0.2 to 1.0.

6 Treatment success is defined as the n births value equal to or higher than 1.
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Table 2. Performance comparison on embryo viability prediction with different modal-
ities using a multimodal transformer. v is a video modality, v’ is an output from
Embryo-vision, e is EHR data, and e’ is an output from BlastAssist. The best perfor-
mance is marked in bold.

Modality Embryo Treatment
AUCROC F-1 AUCROC F-1

v 0.578 0.284 0.579 0.315
v+e 0.580 0.297 0.581 0.286
v+v’ 0.676 0.316 0.675 0.336
v+v’+e+e’ 0.647 0.296 0.643 0.310

v’ 0.666 0.317 0.697 0.313
v’+e+e’ 0.688 0.338 0.683 0.312

Net [2]. We follow the official implementation of [6] 7 to train tabular models
with the best hyperparameters after performing hyperparameter search using
cross-validation. For more details, refer to the supplementary.

Table 3. Performance comparison on embryo viability prediction with different modal-
ities using a two-stage approach. e is EHR data, and e’ is an output from BlastAssist.
Confidence intervals are reported with 10 runs.

Modality Method Embryo Treatment
AUCROC F-1 AUCROC F-1

e
TabTransformer [11] 0.586 ± 0.045 0.110 ± 0.068 0.604 ± 0.054 0.167 ± 0.111
TabNet [2] 0.591 ± 0.016 0.240 ± 0.020 0.631 ± 0.017 0.113 ± 0.033

e+e’
TabTransformer [11] 0.634 ± 0.025 0.298 ± 0.045 0.681 ± 0.023 0.100 ± 0.031
TabNet [2] 0.629 ± 0.025 0.244 ± 0.042 0.672 ± 0.026 0.188 ± 0.058

e’
TabTransformer [11] 0.593 ± 0.021 0.235 ± 0.040 0.624 ± 0.022 0.134 ± 0.030
TabNet [2] 0.623 ± 0.012 0.232 ± 0.042 0.630 ± 0.023 0.146 ± 0.045

Experiments with multimodal transformer We evaluate our multimodal
transformer on embryo viability prediction task using different combinations of
modalities in Tab. 2. The first 4 rows in the table show the results with video
modality. The model trained with only video modality performs worse than the
other modality combinations. When both video and EHR modalities are used,
AUCROC marginally improves. On the other hand, the model performance im-
proves significantly when semantic features are added. This shows that directly
predicting embryo viability is challenging and semantic information is important
for the prediction. However, adding tabular format modalities to video modali-
ties did not improve the prediction. We conjecture this is due to the increased
complexity of multimodal data to learn given limited training samples. The per-

7 https://github.com/kathrinse/TabSurvey

https://github.com/kathrinse/TabSurvey
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formance drop with interpretable features is noticeable with video modality, but
the performance drop is not observed in other combinations of modalities.

We evaluate the multimodal model without a video input v in the last 2 rows
in Tab. 2. The results without a video modality perform better than those with a
video modality. This may be due to the limited number of training videos to learn
good representation. We deploy a pre-trained vision transformer DeiT-Ti [29]
to overcome the limited training set size, but multimodal transformer layers
are trained from scratch; therefore, the multimodal attention is performed in a
sub-optimal way. On the contrary, a model trained with Embryo-vision outputs
v′ performs significantly better than those with v. Unlike raw video, Embryo-
vision outputs are in the form of segmentation masks, which are semantically
meaningful and have a simple visual structure. Therefore, it is easier for the
model to understand and optimize the weights to extract relevant features for
the task.

Experiments with two-stage approach We compare the two-stage approach
with different types of tabular models. Unlike the end-to-end multimodal learn-
ing method, we observed higher performance variation in two-stage methods.
We conjecture this is due to the early convergence of two-stage models, which
results in different solutions. Here, we report confidence intervals from 10 trials
of the two-stage approaches. Among different modalities, using both EHR and
interpretable features performs best for the two-stage approaches. Although vi-
sual data is not directly input to the model, interpretable features encode visual
information; therefore, the tabular models show competitive performance when
using both EHRs and interpretable features.

One noticeable difference to the multimodal transformer is the low F-1 score
on treatment success prediction. Although tabular models are trained with re-
gression objectives, they fail to calibrate the prediction confidence, resulting in
a low F-1 score. In practice, finding the best threshold is a difficult problem.
Therefore, without an appropriate threshold estimation method, a model with
good confidence calibration is favored. If an optimal threshold can be found, a
higher F-1 score will be achieved for both multimodal transformers and two-stage
tabular models.

5 Discussion and Conclusion

One challenge in multimodal learning with supervision is the size of the training
data. Although the collected data is not on a small scale, the embryos with
a treatment outcome are very limited. This hinders the supervised training of
large-scale models. We conjecture the negative effect of video modality in Tab. 2
is also due to the limited training size. One solution is to pre-train modality-
specific encoders separately with pretext tasks using self-supervised learning [9]
and then fine-tune the encoders with multimodal transformers by supervised
learning for the downstream task. With better encoder representations by self-
supervised learning, a multimodal transformer will effectively integrate modality
features without performance degradation.
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In this work, we explore two approaches to incorporate time-lapse videos and
EHRs to build a multimodal model for embryo viability prediction. First, we
build a multimodal transformer to allow different modalities to be integrated to-
gether. The multimodal inputs include not only videos and EHRs but also other
morphological features extracted from off-the-shelf methods. We also explore an
alternative method; a two-stage approach where the first stage is to extract and
convert visual morphological features to tabular format and then combine it
with EHRs for tabular models. The experiments with various modalities demon-
strate the effectiveness of our multimodal model over two-stage approaches. We
further analyze which modality is important in predicting embryo viability. In
future research, we will explore pre-training and fine-tuning methodologies to
address the challenge posed by the limited size of supervised training sets in
multimodal learning.
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