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Abstract. Accurate quantification of multiple sclerosis (MS) lesions us-
ing multi-contrast magnetic resonance imaging (MRI) plays a crucial role
in disease assessment. While many methods for automatic MS lesion seg-
mentation in MRI are available, these methods typically require a fixed
set of MRI modalities as inputs. Such full multi-contrast inputs are not
always acquired, limiting their utility in practice. To address this issue,
a training strategy known as modality dropout (MD) has been widely
adopted in the literature. However, models trained via MD still under-
perform compared to dedicated models trained for particular modality
configurations. In this work, we hypothesize that the poor performance
of MD is the result of an overly constrained multi-task optimization
problem. To reduce harmful task interference, we propose to incorporate
task-conditional mixture-of-expert layers into our segmentation model,
allowing different tasks to leverage different parameters subsets. Second,
we propose a novel online self-distillation loss to help regularize the model
and to explicitly promote model invariance to input modality configu-
ration. Compared to standard MD training, our method demonstrates
improved results on a large proprietary clinical trial dataset as well as
on a small publicly available dataset of T2 lesions.

Keywords: Multiple Sclerosis · Magnetic Resonance Imaging · Segmen-
tation · Deep Learning · Missing modality · Multi-task learning · Mixture-
of-experts · Self-distillation

1 Introduction

Multiple sclerosis (MS) is a chronic autoimmune disease characterized by de-
myelination and atrophy of the brain and spinal cord. Accurate quantification
of T2 lesions through magnetic resonance imaging (MRI) plays a pivotal role
in assessing disease activity and monitoring its progression. To comprehensively
characterize MS lesions, a combination of complementary MR modalities such as
T1w, T2w and fluid-attenuated inversion recovery (FLAIR) are often acquired.

While deep learning models have proven powerful for automated MS lesion
segmentation, such models typically require a fixed set of MRI modalities as in-
puts, which can be impractical. For example, these models may be non-applicable
in clinical settings where it is often the case that some modalities are missing due
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to considerations of time/cost and/or image corruption/artifacts. A naive solu-
tion to this problem is to train dedicated models for each possible input modality
configuration, but this too is impractical. A second disadvantage of fixed-input
models is inefficient aggregation of training data across different datasets: ei-
ther a limited set of common modalities must be selected (reducing available
information) or a more complete set of modalities must be selected and all non-
conforming data discarded (reducing the size of the training set).

It is therefore important to develop more generic segmentation models which
can make optimal use of the available input configurations. While a number of
different solutions have been proposed [1], the present work focuses on build-
ing upon a simple baseline training strategy known as modality dropout [14, 10].
Similar to conventional dropout, modality dropout randomly masks out modal-
ities during training, forcing the model to avoid relying on interactions between
modalities. Several extensions to modality dropout have been proposed, most
notably through the use of specialized network architectures (e.g. multi-encoder
single-decoder schemes [20, 5]) often accompanied by auxiliary tasks and loss
functions (e.g. image reconstruction [20]). More similar to our work is a re-
cent class of methods that explicitly use representations of the input modality
configuration to drive feature fusion [5, 21] or dynamic feature interaction [12]
schemes.

In the present work we describe a new method to improve the baseline modal-
ity dropout training strategy. We show that training with modality dropout can
be seen as optimizing an overly constrained multi-task objective, where each
unique modality configuration constitutes a task. To our knowledge, this is the
first work to make an explicit connection between modality dropout and multi-
task learning. To reduce harmful task interference, we propose the incorpora-
tion of task-conditional mixture-of-expert (MoE) [16] convolutional layers into
our segmentation model, allowing different tasks (modality configurations) to
leverage different model parameter subsets. Combined with a novel online self-
distillation scheme, we demonstrate improved T2 lesion segmentation perfor-
mance compared to standard modality dropout training, significantly reducing
the performance gap compared to dedicated models trained specifically for par-
ticular modality configurations.

2 Methods

2.1 Modality dropout as multi-task learning

Consider a multi-modality image x with corresponding label y. The image x is
represented as a tensor with K channels, i.e. x = [x1, ..., xK ]. During training,
modality dropout generates modality-dropped images x̃ on-the-fly by setting
random tensor channels to zero:

x̃(x,m) = [x1m1, ..., xKmK ] (1)

where m ∈ {0, 1}K is the corresponding modality code vector of length K de-
scribing the absence/presence of each of the K modalities. Training on modality-
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dropped images x̃ discourages the model from relying on interactions between
modalities, allowing a single shared model to handle all missing-modality condi-
tions. To use a trained model for inference, given a query image, the input tensor
is formed by placing the existing modalities into the appropriate channels, and
substituting an equivalently sized array of zeros in place of missing modalities.

Let (x, y) be a sample from the training dataset D. Assuming the modality
codes m are uniformly sampled during training from the set M containing all
2K − 1 unique modality codes, modality dropout minimizes the following loss
function3:

Lmd = Em∼M

[
E(x,y)∼D

[
L
(
y, fθ(x̃(x,m))

)]]
(2)

where fθ is the model with parameters θ, and L is a segmentation loss function.
Despite the simplicity of modality dropout, it often underperforms dedicated

models trained for particular modality configurations. We argue that this be-
havior is expected if modality dropout is viewed through the lens of multi-task
learning. Specifically from the formulation in equation (2), training with modal-
ity dropout can be recognized as optimizing a standard multi-task objective
where each unique modality combination m constitutes a distinct task. In the
multi-task optimization literature, it is known that conflicts arising from task
differences can actually harm individual task performance, particularly when
model parameters are extensively shared across tasks [19].

2.2 Task-conditional modeling with mixture-of-experts

To reduce interference between tasks, we propose a mixture-of-expert (MoE)
modeling technique to enable task-conditional learning. Specifically, we replace
a subset of convolutional layers in our network with MoE convolutional layers
(Fig. 1). Each MoE layer consists of a set of N experts {E1, ..., EN} and a gating
network ϕ(m) : {0, 1}K → [0, 1]N whose input is a binary modality code vector
and whose output is an N -dimensional vector of normalized weights {w1, ..., wN}.
The experts are standard convolutional layers of the same dimension, and the
gating network is a linear layer operating on the modality code m followed by
the softmax operation. The output of the MoE layer is given by a weighted
summation of the outputs of the individual experts:

xout =
N∑

n=1

ϕ(m)nEn(xin). (3)

In this way, different experts can specialize on different tasks, reducing the extent
of parameter sharing across tasks (see supplementary file for a visualization of
trained expert weights). The formulation in equation (3) has the disadvantage
of requiring N convolutions. As done in [18], we take advantage of the linearity

3 If the modality codes are not uniformly sampled, the loss function in equation (2)
need only be modified by the addition of task-specific weights which reflect relative
sampling frequencies.
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of convolution and instead mix the convolutional expert weights and biases first,
and then apply a single convolution with the mixed parameters. Therefore, the
MoE layer has the same computational cost as a standard convolutional layer.

Ideally, the experts in each MoE layer should specialize to different tasks,
and each expert should be equally active on expectation over the different tasks.
To explicitly encourage this behavior, we propose an additional regularization
loss. Let ϕl(m) denote the vector of expert weights in response to modality code
m at MoE layer l. The regularization loss for layer l is:

Ll
reg = cv(Em∼M [ϕl(m)]) + Em∼M [cv(ϕl(m))] (4)

where cv is the coefficient of variation. The first term encourages a uniform mean
expert weight vector ϕ(m) across tasks, while the second term encourages expert
specialization by promoting high variance among expert weights for a given task.
The total regularization loss is given by the summation of the individual layer
losses.

2.3 Online self-distillation

For convenience, we now consider the batch view, where we are given a batch of
training images {(xb, yb)}Bb=1 ∼ D. A corresponding batch of modality-dropped
images {(x̃b(xb,mb), yb)}Bb=1 is generated by randomly and uniformly sampling
a modality code mb ∼ M for each item in the batch. In our implementation, our
segmentation loss term has contributions from both the original and modality-
dropped images:

Lseg =
1

B

B∑
b=1

L(yb, fθ(xb)) +
1

B

B∑
b=1

L(yb, fθ(x̃b)). (5)

Inspired by recent self-distillation methods in self-supervised representation learn-
ing, we propose an additional loss function to regularize our models. Similar
to [7, 4], this loss explicitly encourages the network to produce similar outputs
given two views of the same input. In the context of our work, we treat the full-
modality images x and the corresponding modality-dropped images x̃ as two
such views. Given a batch {(xb, yb)}Bb=1 and its corresponding modality-dropped
version {(x̃b(xb,mb), yb)}Bb=1, the self-distillation loss is:

Lsd =
1

B

B∑
b=1

Lτ (sg(fθ(xb)), fθ(x̃b)) (6)

where sg is the stop-gradient operator and the loss Lτ signifies that the loss is
computed on softened logits at a user-defined temperature τ . We note that while
other works in missing modality segmentation have explored distilling represen-
tations from full-modality images [11, 6], our approach differs from these works
by distilling knowledge on-the-fly within the same model throughout training,
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without requiring a strong pre-trained teacher model. The total loss for our
proposed method is given by:

Ltotal = Lseg + αLreg + w(t)βLsd (7)

where w(t) is a sigmoid-like time-dependent ramp-up factor which takes on a
maximum value of 1 after one-third of the total number of training steps [17].

3 Experiments

3.1 Datasets and Performance Measures

The OPERA I (NCT01247324) (https://clinicaltrials.gov/study/NCT01247324)
clinical trial dataset is a large proprietary multi-site dataset containing T1w pre-
contrast, T1w post-contrast, T2w, FLAIR scans sequences acquired axially with
a resolution of 1 × 1 × 3 mm3. Ground truth T2 lesions were originally obtained
by manual correction on the output of a semi-automated segmentation approach
based on a Bayesian classifier. Because the original classifier used a multimodal
input of T1w pre-contrast, T2w and FLAIR images, only those patients (n = 682)
containing all such sequences and the corresponding annotations were included
in this study. All images were previously pre-processed using non-uniformity cor-
rection and intra-patient rigid co-registration. The MSSEG-2016 lesion chal-
lenge dataset [8] is a smaller (n = 53) multi-site publicly available dataset which
includes T1w pre-contrast, T2w and FLAIR modalities. The ground truth T2
lesions were obtained by consensus among annotations from multiple experts.
The dataset was previously pre-processed by the challenge organizers, with de-
tails are provided in [8]. We emphasize that no additional pre-processing was
performed on either dataset by the authors of this work.

In addition to the Dice similiarity coefficient (DSC), we use a previously-
validated composite score (CScore) [2] to measure the performance of the models.
The CScore is defined as (DSC/8 + PPV/8 + LTPR/4 + (1-LFPR)/4 + Corr/8)
where PPV is the positive predictive value, LTPR the lesion-wise true positive
rate, LFPR the lesion-wise false positive rate, and Corr the volume correlation.

3.2 Implementation

We use a baseline 3D UNet [15] architecture for all experiments. Architectural
details and the incorporation of MoE layers are shown in Fig. 1. All MoE layers
use n = 4 experts. We study the impact of MoE layer placement in Section 3.3.

The MONAI [3] package is used for data-loading and inference. During train-
ing, all images are resampled to isotropic 1× 1× 1 mm resolution and we sam-
ple random crops of dimension 96 × 96 × 96 voxels with an 80% probability
of center-cropping on a positive (non-background) pixel. Cropped patches are
z-normalized independently per channel. For inference, a sliding-window tech-
nique is used to obtain the whole-image segmentation, after which the image is
resampled back to native resolution.
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Fig. 1. Illustration of baseline 3D UNet model and incorporation of proposed MoE
layers. A: The baseline model consists of an encoding path consisting of interspersed
down-sampling (stride 2 convolution) and encoder blocks, and a decoding path, consist-
ing of interspersed up-sampling blocks (stride 2 transposed convolution) and decoder
blocks. The size of the output tensor corresponding to each block is shown (channel
first format). All convolutions use 3×3×3 kernels. Both encoder and decoder blocks
are pre-activation residual blocks (B). C: We adapt the residual blocks by replacing
the second convolutional layer with a convolutional MoE layer, where the input/output
channels of each convolutional layer expert En in the MoE layer are identical to those
of the replaced convolutional layer.

All results were obtained by 3-fold cross-validation. Models were trained using
PyTorch across multiple NVIDIA T4 GPUs using the Adam optimizer with
initial learning rate 1e−4 with cosine decay and a batch size of 4. Owing to
the order-of-magnitude difference between the size of the OPERA I (n = 682)
and MSSEG-2016 (n = 53) datasets, we use 150k training steps for the former
and 50k for the latter. We use an unweighted combined cross-entropy and soft
Dice loss4 as the segmentation loss L for both the supervised and self-distillation
losses.
4 The DiceCELoss class in the MONAI package was used. This exact formulation of

the soft Dice loss can be found in [13].
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Parameters α and β in equation (7) were set by default to 0.1 and 1 respec-
tively. Self-distillation was carried out at a temperature τ = 2. To help regularize
the MoE layers and to encourage exploration across the various experts, following
other works on MoEs [9, 16], we also add random noise with standard deviation
0.2 to the modality codes m during training. All above parameters were selected
heuristically, but we empirically found that parameters τ and α were relatively
insensitive in the ranges [1, 4] and [0.01, 1] respectively.

3.3 Results

We first study the contribution of and interactions between the components of
the proposed method on the OPERA I dataset. Table 1 reports the performance
of various model configurations. Replacing the UNet stem convolution with an
MoE layer brings substantial gains, and further improvements can be obtained
by incorporating MoE layers into each residual block (as shown in Fig. 1) in the
encoding pathway of the UNet. Removing the regularization loss term results in
a performance decrease. It is evident that each of the two principal contributions
(incorporation of MoE layers and online self-distillation) bring substantial im-
provements individually, and that the best performance is obtained when both
are used together. We also include a comparison with the work of [12] who pro-
pose a dynamic convolutional stem layer. Since the original implementation is
for 2D convolutions, we re-implemented the dynamic layer in 3D and incorpo-
rated it into our baseline UNet model leaving all other variables unchanged. We
confirm the findings of [12] that the dynamic layer improves performance over
the baseline modality dropout model, but we find that the gains are relatively
small.

Table 1. Impact of individual components of proposed model on the OPERA I dataset.
Mean DSC and CScore with standard error across all 2K−1 = 7 modality configurations
are reported. The baseline modality dropout model is shown in the first row (Lseg only).

MoE in
stem

MoE in
encoder

Lreg

(α = 0.1)
Lsd

(β = 1)
Dynamic
stem [12]

DSC CScore

- - - - - 66.94±0.21 70.80±0.17

- - - - ✓ 67.16±0.20 71.04±0.16

✓ - ✓ - - 67.58±0.20 71.40±0.16

✓ ✓ ✓ - - 67.66±0.20 71.58±0.16

✓ ✓ - - - 67.39±0.20 71.40±0.16

- - - ✓ - 67.54±0.20 71.41±0.15

✓ ✓ ✓ ✓ - 68.14±0.20 72.07±0.16

Table 2 reports the performance of three compared methods on the OPERA
I dataset for various modality configurations. In general, the performance gap
between standard modality dropout and dedicated models (models trained and
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evaluated on fixed modality configurations) is reduced using our proposed method.
When only a single modality is available, the improvements provided by our pro-
posed method are larger, but there still remains a performance gap relative to
dedicated models. When only a single modality is missing, the improvements
provided by our proposed method are smaller, but the performance gap rela-
tive to the dedicated models is essentially closed. Aggregated over all modality
configurations, Wilcoxon signed-rank tests confirm the improved performance of
our method compared to standard modality dropout method (p < 1e−8 for both
DSC and CScore).

Table 2. Results on OPERA I dataset (n = 682). Mean DSC and CScore with standard
error is reported. Full circles denote presence and empty circles absence. MD: modality
dropout. DM: dedicated model trained specifically for a given modality configuration.
For each metric and modality configuration, best and second best results are bolded
and underlined respectively.

Modalities DSC CScore
T1w T2w FLR MD Ours DM MD Ours DM
 # # 55.55±0.62 58.53±0.61 60.42±0.59 59.45±0.50 62.23±0.47 63.91±0.46

#  # 65.57±0.50 68.06±0.50 69.57±0.50 69.10±0.43 71.52±0.39 72.82±0.36

# #  64.73±0.50 65.63±0.48 66.29±0.47 69.44±0.35 70.62±0.35 70.88±0.35

  # 69.68±0.51 70.57±0.48 71.13±0.48 72.40±0.41 73.42±0.37 73.87±0.38

#   71.85±0.44 72.35±0.43 72.33±0.44 75.73±0.33 76.53±0.32 76.25±0.32

 #  68.36±0.47 69.01±0.46 69.09±0.46 72.89±0.35 73.44±0.33 73.26±0.34

   72.80±0.43 72.79±0.43 72.77±0.43 76.57±0.32 76.75±0.31 76.48±0.33

Finally, we reproduce our key findings using the MSSEG-2016 lesion dataset
(n = 53). Table 3 reports the performance of the same three compared methods
for various modality configurations. Aggregated over all modality configurations,
Wilcoxon signed-rank tests confirm the improved performance of our method
compared to standard modality dropout method (p ≤ 5e−8 for both DSC and
CScore). Qualitative results are available in the supplementary file.

4 Discussion and Conclusion

In this work we demonstrate that treating modality dropout as a multi-task
optimization problem can shed light on the sub-optimal performance of stan-
dard modality dropout, and also suggest interesting directions for improvement.
Specifically, we show that using task-conditional MoE layers is an effective and
general way to improve upon the modality dropout training strategy. However,
the design space of MoE modeling (e.g. formulation of regularization loss, place-
ment of MoE layers in residual block) is large and could not be fully explored in
this short paper. Further investigation into the design of MoE layers and their
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Table 3. Results on MSSEG-2016 dataset (n = 53). Mean DSC and CScore with
standard error is reported. Full circles denote presence and empty circles absence.
MD: modality dropout. DM: dedicated model trained specifically for a given modality
configuration. For each metric and modality configuration, best and second best results
are bolded and underlined respectively.

Modalities DSC CScore
T1w T2w FLR MD Ours DM MD Ours DM
 # # 52.45±2.28 55.35±2.08 57.13±1.47 55.46±1.69 58.24±1.65 57.80±0.93

#  # 52.22±2.32 55.28±2.31 55.01±1.36 53.93±1.71 57.37±1.72 55.65±0.99

# #  71.59±1.57 72.28±1.61 72.04±1.03 73.59±1.19 73.61±1.27 74.14±0.75

  # 58.15±2.15 60.08±2.10 61.77±1.17 59.29±1.63 60.70±1.63 60.77±0.91

#   72.07±1.58 72.80±1.61 72.87±0.97 73.98±1.07 74.44±1.18 74.45±0.74

 #  72.47±1.56 72.61±1.63 72.78±1.11 74.61±1.12 74.22±1.24 74.29±0.75

   72.85±1.56 72.97±1.62 72.05±0.95 74.31±1.13 74.57±1.22 71.88±0.80

incorporation into different segmentation network architectures remains a topic
for future research.
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