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Abstract. Cerebral microbleeds (CMBs) are defined as relatively small
blood depositions in the brain that serve as severity indicators of small
vessel diseases, and thus accurate quantification of CMBs is clinically
useful. However, manual annotation of CMBs is an extreme burden for
clinicians due to their small size and the potential risk of misclassification.
Moreover, the extreme class imbalance inherent in CMB segmentation
tasks presents a significant challenge for training deep neural networks.
In this paper, we propose to enhance CMB segmentation performance by
introducing a proxy task of segmentation of supratentorial and infraten-
torial regions. This proxy task could leverage clinical prior knowledge in
the identification of CMBs. We evaluated the proposed model using an
in-house dataset comprising 335 subjects with 582 longitudinal cases and
an external public dataset consisting of 72 cases. Our method performed
better than other methods that did not consider proxy tasks. Quanti-
tative results indicate that the proxy task is robust on unseen datasets
and thus effective in reducing false positives. Our code is available at
https://github.com/junmokwon/AnatGuidedCMBSeg.
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1 Introduction

Cerebral microbleeds (CMBs) are characterized as small, round accumulations
of blood products, each spanning just a few millimeters in diameter [8]. These
lesions can result from specific pathologies, such as cerebral amyloid angiopathy
(CAA) and hypertensive microangiopathy, which could potentially damage the
vascular architecture of the brain [8,10,4]. Beyond these conditions, aging is one
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Fig. 1. An example of CMB lesions in an axial view of (a) T1-weighted MRI and (b)
GRE T2*-weighted MRI with (c) corresponding manual annotation of CMBs and (d)
automatically labeled lobar, deep supratentorial, and infratentorial regions.

of the important factors that correlates with an increased number of CMBs
[10,8]. Thus, the accurate detection of CMBs serves as an important biomarker
of small vessel disease in the brain.

Typically, CMBs are represented as hypointense lesions in the T2*-weighted
gradient-recalled echo (GRE) sequence [8]. Unlike the conventional T1-weighted
or T2-weighted MRI, the T2*-weighted GRE sequence is sensitive to the bloom-
ing effect caused by CMBs [8]. Despite the usefulness, a major concern arises
from the relatively low specificity in the detection of CMBs. False positives of
CMBs include calcium or iron deposits, blood flow in pial vessels, and melanin,
which mimics the susceptibility effect of CMBs on the T2*-weighted MRI [8].
Thus, manually distinguishing CMB mimics presents a significant burden on
clinicians.

Several studies have suggested automated frameworks for the segmentation
and detection of CMBs to alleviate the burden on clinicians in identifying CMBs.
Notably, introducing proxy labels [15], as well as single-stage [16,14] and dual-
stage pipelines [5,17,23] for the identification of CMBs and false positive reduc-
tion, have been proposed. Kim et al. [15] showed the effectiveness of using proxy
labels for anatomical localization in CMB detection. Lee et al. [16] proposed
a single-stage CMB detection network that ensembles information from axial,
coronal, and sagittal planes. Kim et al. [14] unified 3D U-Net [22] and Mask
R-CNN [11] into a single network, significantly improving precision compared to
conventional region proposal networks. Chen et al. [5] implemented statistical
thresholding based on the intensity distribution of CMBs as a preprocessing step.
Liu et al. [17] applied the 3D fast radial symmetry transform for false positive
reduction. Sanguesa et al. [23] introduced Mask R-CNN [11] to detect candi-
date regions of CMBs. Despite the effort to eliminate false positives of CMBs,
existing methods heavily rely on data-driven algorithms and often overlook the
incorporation of clinical prior knowledge.

In this paper, we propose a segmentation framework for the identification
of CMBs by incorporating a proxy task designed to align with Greenberg’s cri-
teria [8]. Specifically, our method extends a binary segmentation of CMBs on
T2*-weighted MRI by implementing a segmentation of critically related brain
regions in CMB identification: lobar, deep supratentorial, and infratentorial re-
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(e) Clinically-derived False Positive Reduction

(b) Segmentation Network
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(d) Proxy Task Integration
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Fig. 2. An overview of our CMB segmentation framework. Our model takes (a) co-
registered multi-modal MRI inputs. (b) Then, a segmentation model jointly produces
(c) predicted CMB candidate regions and (d) proxy labels, followed by (e) a false
positive reduction module that employs clinical insights toward CMB identification.

gions, as suggested in [9,21]. We visualized CMB annotations besides related
brain regions as proxy labels in Fig. 1. Especially, identifying whether microb-
leeds are lobar or deep is crucial for treatment planning. Lobar microbleeds are
most commonly associated with CAA [8]. On the other hand, deep microbleeds
are primarily related to chronic hypertension and hypertensive arteriopathy [8].
Our proxy label generation process is fully automated by utilizing FreeSurfer [6]
and ANTs [1]. Our proxy task enables us to localize probable CMBs while effec-
tively reducing false positives. Furthermore, our model could assist clinicians by
providing an automated assessment of the visual grading of CMBs, namely the
Microbleed Anatomical Rating Scale (MARS) [9], based on the predicted lobar,
deep supratentorial, and infratentorial regions.

The contribution of this paper can be summarized as follows. First, we pro-
pose the integration of a proxy task in the segmentation of CMBs by introducing
the segmentation of lobar, deep supratentorial, and infratentorial regions without
the need for extra manual annotation. Second, we show that predicted proxy la-
bels can effectively reduce false positives, particularly on unseen datasets. Lastly,
we demonstrate the reproducibility of our model in both in-house and external
public datasets.

2 Methods

The overall architecture of our proxy task integrated into the CMB segmentation
network is shown in Fig. 2. Specifically, our framework consists of two parts: a
segmentation network and a false positive reduction module.

2.1 Segmentation of CMB Lesions with Proxy Labels

For a given T1-weighted and T2*-weighted MRI scan, the goal of the task ex-
tends to not only segmenting CMB lesions but also segmenting the related brain
regions into proxy labels, such as lobar, deep supratentorial, and infratentorial
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Algorithm 1 Pseudo-code of proxy label generation.
1: Input: T1-weighted MRI M and JHU-DTI atlas J
2: Output: Lobar L, deep supratentorial D and infratentorial region I
3: Register J from MNI152 space to MNI305 space ▷ rigid-body transformation
4: for all subjects do
5: Perform FreeSurfer parcellation on M
6: Compute Talairach transformation T via FreeSurfer
7: for all segmented regions Pi do
8: if Pi ∈ Cerebral lobes then L← L ∪ Pi

9: if Pi ∈ Deep supratentorial region then D ← D ∪ Pi

10: if Pi ∈ Infratentorial region then I ← I ∪ Pi

11: end for
12: Register J from MNI305 space to native space of M using T
13: Select internal capsule and external capsule from J
14: for all selected white matter regions Ji do
15: D ← D ∪ Ji

16: end for
17: end for

regions. Selecting a segmentation network is a design choice. Among many pos-
sible architectures, we adopted nnUNet [13] for our segmentation module.

Configuring loss functions. In [18], choosing an appropriate loss function
plays a crucial role in segmentation tasks, especially when dealing with an ex-
treme class imbalance between the foreground and background voxels. Typically,
the diameter of CMB lesions does not exceed 10 mm [9,21], which makes the
segmentation task challenging. In this scenario, we adopted DiceTopK loss [18,3],
which is a linear combination of soft Dice loss and TopK loss to penalize easily
classified voxels and help the network focus on challenging voxels.

Generating proxy labels. We leveraged whole brain parcellation results from
FreeSurfer [6] to generate proxy labels for lobar, deep supratentorial, and in-
fratentorial regions as described in Algorithm 1 and supplementary Fig. S1.
Cerebral lobes including hippocampus and amydala were categorized as lobar
regions. Deep supratentorial region includes thalamus, caudate, pallidum, cor-
pus callosum, nucleus accumbens, ventral diencephalon, internal capsule (IC),
external capsule (EC), and deep white matter voxels surrounding lateral ventri-
cle, caudate, thalamus, and pallidum. To localize IC and EC, we registered IC
and EC from the JHU-DTI atlas [19,20] to the subject’s T1 space. Finally, the
brainstem and cerebellum voxels were classified as infratentorial regions.

2.2 Clinically-derived False Positive Reduction

Upon successful segmentation of proxy labels, our framework can identify candi-
date CMB regions by calculating the total ratio of surrounding brain parenchyma
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Fig. 3. Our clinically derived false positive reduction module. (a) Illustration of pre-
dicted CMB candidates. (b) Calculation of the Euclidean distance map, assuming the
voxel resolution meets the in-plane isotropy. (c) Segmentation of peripheral voxels
within a 2 mm range, followed by the quantification of peripheral voxels associated
with brain parenchyma. Candidate regions are marked as false positive if a majority
of the surrounding voxels are identified as background class.

as illustrated in Fig. 3. Specifically, brain parenchyma is derived from the union
of predicted proxy labels. Euclidean distance map is then calculated to select
voxels adjacent to CMB areas while ensuring in-plane isotropy, particularly in
an axial view. If the voxel resolution is isotropic, adjacent out-of-plane slices are
also considered during the selection of peripheral CMB voxels. When dealing
with anisotropic voxel resolutions, especially when the out-of-plane slice thick-
ness is larger than 2 mm, the selection criterion is limited to the in-plane axes.
Finally, false positives are discarded if more than half of the voxels surrounding
a CMB region are classified as non-brain regions, thereby leveraging anatomical
insights to improve the specificity of the CMB detection.

3 Experiments

3.1 Datasets

In-house dataset. Our study used an in-house dataset obtained from Samsung
Medical Center comprising 335 participants with 582 cases including longitudinal
scans. We applied stratified sampling based on the number of CMB lesions and
the total volume of CMBs for each case to split the training set and internal
validation set with a ratio of 0.8 and 0.2, respectively. In sum, there are 483
training cases and 99 internal validation cases, ensuring no overlap of subjects
between the different sets. The images were acquired using a 3T Philips scanner
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with a spatial resolution of 0.5× 0.5× 0.5 mm3 for T1-weighted MRI scans and
0.4286× 0.4286× 6.5 mm3 for T2*-weighted MRI scans.

External public dataset. To further validate our framework, we incorporated
an external public dataset collected from the MICCAI VALDO 2021 challenge
[24]. Specifically, we used 72 publicly available cases from three different cohorts
(SABRE, RSS, and ALFA). While the SABRE and ALFA studies utilized a 3T
MRI scanner for MRI acquisition, the RSS study was performed with a 1.5T GE
MRI scanner.

3.2 Data Preprocessing

T1-weighted MRI preprocessing. Given a T1-weighted MRI scan, we per-
formed FreeSurfer cortical and subcortical parcellation [6,7]. The parcellation
pipeline includes motion correction, skull-stripping, intensity inhomogeneity cor-
rection, and Talairach MNI space transformation. The parcellation results will
then be used for proxy label generation.

T2*-weighted MRI preprocessing. Since T2*-weighted MRI scans are not
ideally suited for processing with the FreeSurfer pipeline, we adopted Synth-
Strip [12] to perform skull-stripping including the surrounding cerebrospinal fluid
(CSF) regions. Following skull-stripping, we applied the N4ITK algorithm [25]
for bias field correction.

Multi-modal image registration. In order to feed both T1-weighted and
T2*-weighted MRI scans onto the networks, T1-weighted MRIs underwent a
registration process onto the T2* space by employing a rigid-body transforma-
tion via ANTs [1]. Moreover, to unify voxel spacings between our in-house dataset
and the external public dataset, all of the VALDO 2021 cases were subsampled
to fit a voxel resolution of 0.4286× 0.4286× 6.5 mm3, ensuring both datasets to
have the same spatial dimensions.

3.3 Implementation Details

Due to the compatibility limitations of nnDetection [2] with PyTorch versions
beyond 2.0, all networks in this study were implemented in Python 3.8 using
PyTorch 1.11.0 for a fair comparison. Instead of using the default trainer in 3D
full-resolution nnUNet [13], we applied a modified trainer to employ a linear
combination of soft Dice loss and TopK loss with k = 10, λdice = 0.5, and
λtopk = 0.5.
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Table 1. Qualitative results of CMB segmentation and detection task on internal
validation set and external dataset. Bold is the best-performing case.

Method Internal (n=99) External (n=72)
Dice F1-score Dice F1-score

nnDetection [2] 0.2420 0.2484 0.3146 0.3167
nnUNet [13] 0.4627 0.4714 0.2972 0.2860
Ours 0.5138 0.5199 0.4688 0.4600

Table 2. Ablation analysis on loss configurations and module designs. Bold is the
best-performing case. DiceCE: Linear combination of Dice loss and cross-entropy loss.
DiceTopK: Linear combination of Dice loss and TopK loss. Proxy: Proxy task integra-
tion. CFPR: Clinically-derived false positive reduction.

Method Loss Module Internal (n=99) External (n=72)
DiceCE DiceTopK Proxy CFPR Dice F1-score Dice F1-score

nnUNet [13]

✓ ✓ 0.4485 0.5104 0.3628 0.3696
✓ ✓ ✓ 0.4488 0.5118 0.4281 0.4116

✓ ✓ 0.5137 0.5182 0.4549 0.4461
✓ ✓ ✓ 0.5138 0.5199 0.4688 0.4600

3.4 Evaluation Metrics

For the CMB segmentation task, we use the Dice coefficient to quantify overlaps
between predictions and ground truth labels. When identifying CMB lesions, the
F1-score is utilized by calculating the shortest Euclidean distance between the
centroids of predicted CMB regions and the centroids of ground truth regions,
followed by applying a distance threshold of not exceeding 5 mm [24].

4 Results

To verify the effectiveness of our proxy task integration and clinically-derived
false positive reduction (CFPR), we compared our results with state-of-the-art
methods such as nnUNet [13] and nnDetection [2]. We reported quantitative
metrics in Table 1 and qualitative results in Fig. 4 and supplementary Fig. S2.
Our method consistently shows promising results compared to baseline methods
on an unseen dataset with a different field strength and repetition time. We vi-
sualized challenging cases acquired in the 1.5T MRI scanner in supplementary
Fig. S2, which did not show signal hyperintensity in CSF regions. This empha-
sizes that our model is robust to imaging quality as well as annotation quality,
which is affected by clinicians’ bias.

Ablation studies. We performed an ablation analysis on loss configurations
and our proposed modules. The baseline result, excluding proxy tasks and CFPR,
is reported as the nnUNet baseline in Table 1. Table 2 shows little performance
improvement on the internal dataset while a significant boost in Dice coefficient
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Fig. 4. (a) Qualitative results of our proposed method with nnDetection [2] and
nnUNet [13] on internal validation set and external dataset. (b) Ablation analysis
of clinically-derived false positive reduction module with varying peripheral thresholds
on the external dataset. We chose 2 mm as an optimal peripheral threshold based on
our model with DiceCE loss and DiceTopK loss.

and F1-score when applying proxy tasks and CFPR on an unseen dataset. The
limited impact of the CFPR module on the internal dataset may be due to the
training and validation sets originating from the same MRI scanner. In con-
trast, our proxy task is robust to unseen datasets due to its large size compared
to CMB lesions, which contributes to enhancing the overall performance. The
successful segmentation of proxy labels could further benefit our CFPR module
both trained on DiceCE loss and DiceTopK loss. We also evaluated our model
with different peripheral thresholds in the CFPR module as described in Fig. 4
(b), showing that a peripheral threshold of 2 mm is optimal in terms of the Dice
coefficient.

5 Conclusion

In this paper, we propose proxy task integration and clinically-derived false pos-
itive reduction to improve the performance of CMB segmentation and detection.
Specifically, we automatically derived proxy labels via FreeSurfer and ANTs to
improve the overall performance of our model especially on unseen datasets.
Furthermore, the prediction of proxy labels can be utilized in reducing false
positives of CMBs. Without extra manual annotation done by clinicians, our
method shows a remarkable improvement in terms of the Dice coefficient and
F1-score in the external dataset.
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