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Abstract. In the task of disease prediction, medical data with differ-
ent modalities can provide much complementary information for dis-
ease diagnosis. However, existing multi-modal learning methods often
tend to focus on learning shared representation across modalities for
disease diagnosis, without fully exploiting the complementary informa-
tion from multiple modalities. To overcome this limitation, in this pa-
per, we propose a novel Multi-modal Graph Disentangled Representation
(MGDR) approach for brain disease prediction problem. Specifically, we
first construct a specific modality graph for each modality data and em-
ploy Graph Convolutional Network (GCN) to learn node representations.
Then, we learn the common information across different modalities and
private information of each modality by developing a disentangled rep-
resentation of modalities model. Moreover, to remove the possible noise
from the private information, we employ a contrastive learning module
to learn more compact representation of private information for each
modality. Also, a new Multi-modal Perception Attention (MPA) module
is employed to integrate feature representations of multiple private in-
formation. Finally, we integrate both common and private information
together for disease prediction. Experiments on both ABIDE and TAD-
POLE datasets demonstrate that our MGDR method achieves the best
performance when compared with some recent advanced methods.

Keywords: Brain disease prediction · Graph learning · Disentangled
representation learning · Multi-modal learning.

1 Introduction

Recently,multi-modal brain disease prediction has become a promising approach
for Alzheimer’s Disease (AD) [1] and Autism Spectrum Disorder (ASD) [2] pre-
diction. Multiple brain imaging modalities such as Magnetic Resonance Imaging
(MRI) [3] and Positron Emission Tomography (PET) [4] can provide complemen-
tary structural and functional information for abnormal brain regions [3, 5]. In
addition, various clinical data such as cognitive tests, demographic information,
etc, are also helpful to predict brain diseases [6]. By integrating multi-modal
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data [7, 8], we can gain a more holistic view of brain function and structure,
enhancing the understanding of brain disorders.

Also, deep learning methods have made significant progress in medical field [9,
10]. In particular, Graph Neural Networks (GNNs) are extensively utilized in the
field of biomedical analysis [11] including AD and ASD [6] [12] prediction. For ex-
ample, Kazi et al. [13] combine imaging data and non-imaging data to construct
an overall affinity graph of subjects for the disease prediction tasks. Pariost et
al. [12] utilize non-imaging data such as age and gender with imaging infor-
mation to construct a relationship graph for patients to enhance the learning
performance. Song et al. [10] propose a multi-center attention graph to integrate
multi-modal data together for composition and subsequently employ multiple-
channel pooling GCN for disease prediction. In addition to single graph model,
some researchers have also conducted many studies based on multi-graph mod-
els [14–16]. Compared with single graph model, multiple graphs can effectively
exploit the feature relationships for multi-modality data. For example, Kazi et
al. [15] propose LSTM-GCN method to construct multiple graphs from multi-
modal data, treating these graphs as a sequence and using attention mechanism
to integrate multi-modal features for final decision. Wen et al. [16] propose to
construct multiple graphs for brain networks to obtain richer brain structure in-
formation for ASD diagnosis. Although existing GNN-based methods have been
widely utilized for disease prediction, they generally fail to capture the intrinsic
relationships of different modalities [6]. In other words, they generally exploit the
common information of modalities, failing to fully consider the complementary
information in the private information of each modality.

To address these issues, we propose a novel Multi-modal Graph Disentan-
gled Representation (MGDR) approach for brain disease prediction. To be spe-
cific, MGDR first represents multi-modal information of the subjects as multi-
ple graphs and utilizes Graph Convolution Network (GCN) to extract features
of subjects. Then, inspired by works [17, 18], MGDR disentangles multi-modal
graphs to obtain the common information between modalities and private infor-
mation of each modality respectively. Particularly, to extract reliable informa-
tion, we employ Singular Value Decomposition (SVD) to decouple the common
information. Also, to filter out noises from the private information, we utilize a
contrastive learning module to constrain the representations of private informa-
tion. Finally, MGDR integrates both common and private information to predict
brain disease. The main contributions are summarized as follows:

– We propose to develop a novel multi-graph representation learning approach
that fully exploits the dependencies of subjects to learn context-aware feature
representation for each subject.

– We propose to exploit a multi-modal disentangled representation pipeline by
considering both common information of modalities and private information
of each modality to better guide disease prediction.

– Comparing with recent methods, our proposed MGDR method achieves the
best prediction performance on the public ABIDE and TADPOLE datasets.
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2 Related Work

For brain disease prediction with multi-modal data, existing researches [7,12,13,
17] have achieved significant progress. For example, graph-based learning meth-
ods for predicting brain diseases have been widely applied [6,14,19,20]. Among
them, Cosmo et al. [20] propose an end-to-end graph learning framework to learn
the optimal single graph. Kazi et al. [14] propose to construct multiple affinity
graphs for sharing a node set to represent the subjects. Zheng et al. [6] propose
the MMGL, which utilizes multi-modal attention to fuse features from different
modalities and then constructs a global graph for downstream tasks. In addition
to graph-based learning methods described above, several other approaches have
been proposed to predict brain diseases [7,17,21]. For example, Xu et al. [7] pro-
pose a method called MSTGC, which utilizes two contrastive constraints to mine
the complementary information between multiple modalities and the unique in-
formation of each modality. Wang et al. [17] propose a method DMAAN to
achieve latent representations of different modalities via encoding multi-modal
imaging data. Especially, the DMAAN [17] decomposes multi-modal data into
the shared and the specific representations to predict brain disease, being consid-
ered more related work with our proposed MGDR. Although the above methods
obtain relatively good performance for brain disease prediction, they cannot ef-
fectively exploit the dependences between different modalities. There is still a
lack of exploration for complementary information between multiple modalities,
which hinders the full utilization of the shared information of modalities and the
private information of each modality.

3 Methodology

The overall framework of the proposed MGDR is shown as Fig. 1. Firstly, we
utilize multi-graph representation learning to obtain the feature representation
of each subject across multiple modalities. Then, we disentangle multi-modality
features to obtain rich common information between modalities and private in-
formation of each modality. Finally, we integrate both common and private in-
formation together for disease prediction.

3.1 Multi-Graph Representation Learning

Let X = {X(1),X(2) · · ·X(M)} denotes the original features of different modal-
ities where M is the modality number and X(m) = {x(m)

1 · · ·x(m)
N } ∈ RN×dm

denotes the subjects’ features of the m-th modality. To capture the relation-
ships between subjects in multiple modalities, we construct multiple graphs.
Specifically, we utilize cosine similarity [6] to calculate the relationships between
subjects in each modality as follows:

A
(m)
ij = sim

(
x
(m)
i , x

(m)
j

)
= cos

(
x
(m)
i W(m), x

(m)
j W(m)

)
, (1)



4 Bo Jiang et al.

Fig. 1. The DMGR framework mainly includes Multi-Graph Representation Learning
(MGRL) and Disentangle Representation of Modalities (DRM).

where W(m) denotes the transformation matrix. To encourage the smoothness
and sparsity of the learned graph, we add regularization constraint Lgraph on
A. Here, the Dirichlet energy function [22] is utilized to optimize the learned
graphs and some additional regularization terms [6] are added to avoid the trivial
solution and excessive sparsity, i.e.,

Lgraph(A) = (2)
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where 1 represents a vector of all one and ∥ · ∥ denotes the Frobenius norm. α
and β are two hyper-parameters to balance different terms. To better learn the
representation of each subject and capture the dependencies of different subjects,
we use Graph Convolutional Network (GCN) [23] to obtain context-aware node
representations as follows:

H(m,l+1) = ReLU(D̂(m)− 1
2 Â(m)D̂(m)− 1

2H(m,l)Θ(m,l)), (3)

where Â(m) = A(m)+wI where w indicates the weight coefficient. Θ(m) denotes
the trainable weight matrix and D̂ represents the degree matrix of Â.

3.2 Disentangled Representation of Modalities

Let H = {H(1) · · ·H(M)} denotes the residual weighted sum of the obtained
feature representations via above GCN module and the original feature repre-
sentations. To learn richer common and private information of multiple graphs,
we propose to develop a novel Disentangled Representation of Modalities (DRM)
module. There are two main steps of the proposed DRM module.
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Common Information Representation. To obtain more effective com-
mon information, we first concatenate the feature representations of all modali-
ties together and then apply MLP as follows,

C = MLP
(
Con(H(1),H(2) · · ·H(M))

)
, (4)

where Con(·) denotes the concatenation operation and C denotes the extracted
common information. Also, we disentangle the fused common information C by
using SVD [18] to obtain its left singular vectors U and right singular vectors
V. By retaining the first k left singular vectors and the first k right singular
vectors, the common information S is obtained via S = UkV

T
k . This approach

is beneficial as it effectively captures the principal directions of variation in the
data, while preserving the most crucial structural information and reducing the
impact of noise.

Private Information Representation. Private information contains the
complementary information of different modalities and also probably contains
some noises [18]. To promote the disentanglement of private information, we
employ a MLP module with non-shared parameters. This operation can enhance
the feature representations H(m) to obtain the private information P(m) as

P(m) = MLP(H(m)). (5)

To further reduce the possible noises, we also employ a contrastive learning
module [18]. Specifically, Let (p

(m)
i ,p

(m)
j ) ∈ E(m)

pos denote the pair with high
similarity which is considered as the positive pair, while (p

(m)
k ,p

(m)
l ) ∈ E(m)

neg

denote the subject pair with low similarity which is considered as the negative
pair. Thus, the contrastive loss is designed as follows:
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where θ denotes the metric function and τ represents the temperature param-
eter. Besides, inspired by work [6, 24], to integrate multiple private informa-
tion, we introduce Multi-modal Perception Attention (MPA) module to balance
the importance of different modalities. To be specific, we first utilize three lin-
ear transformations to project P(m) into queries Q(m) = {q(m)

1 · · · q(m)
N }, keys

K(m) = {k(m)
1 · · · k(m)

N } and values V(m) = {v(m)
1 · · · v(m)

N }. Then, we calculate
the Multi-modal Perception Attention weights between different modalities as:

T
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To aggregate the information from other modalities and enhance the feature
representation of each modality, we conduct the message propagation as,

p̂
(m)
j =

∑M

n=1
T

(m,n)
j v

(n)
j + γv

(n)
j , (8)
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where γ > 0 denotes the weight parameter.
Feature Fusion. We concatenate features {p̂(m)

1 , · · · p̂(m)
N } to obtain the uni-

fied feature representations P̂(m) of all subjects in the m-th modality. The disen-
tangled common information S and private information P̂ = Con

(
P̂(1) · · · P̂(M)

)
are fused as follows:

Z = Con
(
P̂,S

)
. (9)

We feed the fused features Z into the classifier to obtain predicted labels Ŷ =
(ŷ1, ŷ2 · · · ŷN ) for all subjects. The proposed method is training in an end-to-end
manner. The total training loss for our MGDR model can be defined as:

Ltotal = δLgraph(A) + ζLcon + ηLce(Y, Ŷ ), (10)

where Lce(Y, Ŷ ) represents the cross-entropy loss and δ, ζ, η are parameters.

4 Experiments and Results

4.1 Datasets and Implementation Details

ABIDE: The Autism Brain Imaging Data Exchange (ABIDE) dataset [25] is a
public dataset. After pre-processing, we obtain neuroimaging and phenotypic
data from subjects with ASD, including four modalities, e.g., fMRI connec-
tion networks, automated anatomical quality assessment, automated functional
quality assessment and demographic information. TADPOLE: The TADPOLE
dataset [26] comes from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. Six modalities are acquired through data preprocessing which include
cerebrospinal fluid (CSF) biomarkers, PET, cognitive tests, demographic infor-
mation, MRI and risk factors. The demographic information is shown in Table
1 on both ABIDE and TADPOLE dataset.

Table 1. Demographic information of subjects on both ABIDE and TADPOLE
datasets. MOCA and MMSE are two cognitive function screening scales.

TADPOLE Age Female/Male MMSE MoCA
AD 73.29±7.97 30/44 22.82±2.93 16.86±5.06
MCI 70.87±7.19 144/171 28.14±1.70 23.53±3.10
NC 72.81±5.96 114/95 29.13±1.11 25.93±2.45

ABIDE Age Female/Male Open-Eye Closed-Eye
ASD 17.07±7.95 54/349 288 115
NC 16.84±7.23 90/378 321 147

Data Preprocessing and Implementation Details. Collecting complete
multi-modal features for brain disease prediction is a challenging task. On the
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Table 2. Comparisons of our MGDR method with state-of-the-art methods.

TADPOLE ABIDE
METHOD ACC(%) AUC(%) ACC(%) AUC(%) SEN(%) SPE(%)

InceptionGCN [13] 77.42±1.53 81.58±1.31 72.69±2.37 72.81±1.94 80.29±5.10 74.41±6.22
MLP 82.28±4.39 83.13±3.20 75.22±8.06 79.30±7.95 77.35±9.00 75.24±10.9

PopGCN [12] 82.37±5.10 80.71±4.21 69.80±3.35 70.32±3.90 73.35±7.74 80.27±6.48
LSTMGCN [15] 83.40±4.11 82.42±7.97 74.92±7.74 74.71±7.92 78.57±11.6 78.87±7.79
Multi-GCN [14] 83.50±4.91 89.34±5.38 69.24±5.90 70.04±4.22 70.93±4.68 74.33±6.07
EV-GCN [19] 88.51±2.34 89.97±2.15 85.90±4.47 84.72±4.27 88.23±7.18 79.90±7.37

LGL [20] 91.37±2.12 93.96±1.45 86.40±1.63 85.88±1.75 86.31±4.52 88.42±3.04
MMGL [6] 92.31±1.73 93.91±2.10 89.77±2.72 89.81±2.56 90.32±4.21 89.30±6.04
MAFGN [8] 92.80±0.92 93.32±2.10 - - - -

MGDR(Ours) 93.64±3.90 94.89±2.96 91.39±2.00 91.25±2.07 89.33±4.55 93.16±3.27

ABIDE dataset, we preprocess the multi-modality data using the Preprocessed
Connectome Project (PCP) [12, 27, 28]. On the TADPOLE dataset, we adopt
the approach [6] for feature selection, which takes advantage of morphological
features. Then, we compute the missing rate of features for each subject. Features
of each subject with a missing rate above 5% are excluded. For subjects with
a missing rate below 5%, we address the missing values by imputing the mean
of the available data. Our experiment utilizes a 10-fold cross-validation method
which can avoid overfitting and obtain more reliable results.

4.2 Comparison Results

Quantitative Results. We utilize Accuracy (ACC), Area Under the Curve
(AUC), Specificity (SPE) and Sensitivity (SEN) for evaluation. We compare the
proposed method with nine recent methods: Multi-Layer Perceptron (MLP),
single-graph-based methods including PopGCN [12], InceptionGCN [13], EV-
GCN [19], LGL [20], MMGL [6], MAFGN [8], and multi-graph-based methods
including Multi-GCN [14], LSTMGCN [15]. The comparison results are sum-
mazired in Table 2. Here, we can observe that our MGDR model achieves better
performance than existing single-graph-based methods and multi-graph-based
methods. Specifically, on the TADPOLE dataset, our MGDR method outper-
forms other methods, with improvements of 0.84% and 0.93% over the second-
best method on ACC and AUC, respectively. On the ABIDE dataset, compared
with the second-best method, our method shows improvements of 1.62%, 1.44%
and 3.86% on ACC, AUC and SPE, respectively. However, our method exhibits
a relatively high standard deviation because the utilized SVD may result in some
fluctuations in the model’s performance.

Ablation Study. We perform ablation experiments on both ABIDE and
TADPOLE datasets. The results are shown in Table 3. Comparison experiments
are designed as follows: (1) Backbone: We only retain MPA [6] as our back-
bone. The initial features are input into the MPA module. Then, the results
are predicted after modal interaction. (2) Backbone+P̂: We utilize MGRL and
MPA module to obtain private information P̂ of each modality. The results of
this model have been significantly improved, indicating that the learned private
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Table 3. Results of the ablation study on ABIDE and TADPOLE datasets.

TADPOLE ABIDE
METHOD ACC(%) AUC(%) ACC(%) AUC(%) SEN(%) SPE(%)
Backbone 89.12±3.31 90.84±2.63 86.48±2.99 86.40±3.30 85.34±3.57 87.45±3.14

Backbone+P̂ 92.63±2.65 92.80±2.26 91.05±1.90 90.92±1.96 89.10±4.39 92.73±3.17
Backbone+P̂+Lcon 92.80±3.21 93.53±3.31 91.16±1.62 91.14±1.67 89.57±3.94 92.51±2.92

MGDR(Backbone+P̂+Lcon+S) 93.64±3.90 94.89±2.96 91.39±2.00 91.25±2.07 89.33±4.55 93.16±3.27

Fig. 2. Visualization of the feature representations on different datasets.

information P̂ is effective. (3) Backbone+P̂+Lcon: Based on the Backbone+P̂,
incorporating the contrastive constraint Lcon in Eq.(6) can obtain a good perfor-
mance. This experiment demonstrates the effectiveness of reducing noise within
the graphs by Lcon. (4) Backbone+P̂+S+Lcon: This is our MGDR model. After
extracting the private information P̂, we incorporate the disentangled common
information S. Our MGDR model shows the best performance, indicating the
effectiveness of integrating the disentangled common and private information.

Visualization. To evaluate the performance of our MGDR method on both
ABIDE and TADPOLE dataset, we use the 2D t-SNE [29] to visualize the feature
representation in MMGL [6] and in our method, separately. As shown in Fig.2
(a) and (b), MGDR method obtains superior performance and exhibits smaller
intra-class distances and larger inter-class distances, which indicate that our
method can obtain better feature representations in the subsequent tasks.

5 Conclusion

This paper proposes a novel Multi-modal Graph Disentangled Representation
(MGDR) method for brain disease prediction. MGDR has two main aspects. It
first employs Multi-Graph Representation Learning (MGRL) module to capture
the dependences of multi-modal subjects for context-aware subject representa-
tion. Subsequently, the Disentangled Representation of Modalities (DRM) is em-
ployed to extract common and private information respectively for brain disease
diagnosis. The experiments demonstrate that the proposed method outperforms
other state-of-the-art methods on public ABIDE and TADPOLE datasets.
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