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Abstract. Surgical guide plate is an important tool for the dental im-
plant surgery. However, the design process heavily relies on the dentist
to manually simulate the implant angle and depth. When deep neu-
ral networks have been applied to assist the dentist quickly locates the
implant position, most of them are not able to determine the implant
depth. Inspired by the video grounding task which localizes the starting
and ending time of the target video segment, in this paper, we simplify
the implant depth prediction as video grounding and develop a Texture
Perceive Implant Depth Prediction Network (TPNet), which enables us
to directly output the implant depth without complex measurements of
oral bone. TPNet consists of an implant region detector (IRD) and an
implant depth prediction network (IDPNet). IRD is an object detector
designed to crop the candidate implant volume from the CBCT, which
greatly saves the computation resource. IDPNet takes the cropped CBCT
data to predict the implant depth. A Texture Perceive Loss (TPL) is de-
vised to enable the encoder of IDPNet to perceive the texture variation
among slices. Extensive experiments on a large dental implant dataset
demonstrated that the proposed TPNet achieves superior performance
than the existing methods.
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1 Introduction

Tooth loss is a common problem among middle-aged and elderly people, and
artificial dental implantation is one of the most appropriate treatment methods.
In clinical, to ensure implant accuracy and accelerate the implantation process,
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Fig. 1. Comparison of the video grounding task and implant depth prediction task.

dentists usually use the surgical guide plate during surgery. However, the design
of the surgical guide plate require to manually simulate the implant position
(e.g., implantation angle and depth) by loading the Cone-beam computed to-
mography (CBCT) data into the design software, which is labour-intensive and
time-consuming. With the development of deep learning, using artificial intelli-
gence methods to speed up such process is promising.

Recently, a number of literature works have been proposed to assist the
dentist quickly locating the implant position. ImplantFormer [12] proposed to
predict the implant position using the 2D axial view of tooth crown images and
projects the prediction results back to the tooth root by the space transform
algorithm. Following this paradigm, a series of improved works, TSIRP [11],
TCEIP [14], and TCSloT [13] are proposed to improve the accuracy of implant
position prediction. Although these methods demonstrate excellent performance,
they are semi-automated as the dentist are required to manually set the implant
depth, which is inefficient for the clinic application. To solve this problem, some
researchers try to detect the alveolar bone and mandibular canal based on the
sagittal view of CBCT to determine the height and width of the alveolar bone,
which predicts a approximate implant depth [9]. Kurt et al. [3] utilised multiple
pre-trained convolutional networks to segment the teeth and jaws to locate the
missing tooth and determine the implant depth by measuring oral tissues (e.g.,
mandibular canal, maxillary sinus, and jaw bone edge). However, these methods
are too complicated for the clinic application and can not provide a precise
implant depth.

Video grounding is an important yet challenging task in computer vision,
which requires the machine to watch a video and localize the starting and ending
time of the target video segment that corresponds to the given query [15]. In
this paper, we found that the task of implant depth prediction is similar to
video grounding, if we consider the 3D CBCT data as a video and the beginning
and ending slice of implant as the starting and ending time of the target video
segment, as shown in Fig. 1. By this means, the implant depth can be directly
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Fig. 2. (a) Comparison of 2D slices with different sampling intervals, k represents the
sampling interval. (b) Texture variation computed from the 2D slices.

determined during inference, without requiring additional measurements of oral
tissues.

Motivated by the above observation, in this paper, we develop a Texture Per-
ceive Implant Depth Prediction Network (TPNet), which consists of an implant
region detector (IRD) and an implant depth prediction network (IDPNet). IRD
is an object detector designed to locate the implant region. We crop a sub-volume
from the CBCT data according to the detection result of IRD. By this means,
the irrelevant information of CBCT for implantation will be removed and the
input data size can be substantially reduced. Then, the sub-volume is taken as
the input of IDPNet. IDPNet is devised to regress the precise implant depth,
which is a single encoder-decoder regression network. As the determination of
implant depth relies on the texture of neighboring teeth, a Texture Perceive Loss
(TPL) is proposed to enable the encoder to perceive the texture variation among
slices, which greatly helps the IDPNet predicts more accurate implant depth.

Main contributions of this paper can be summarized as follows:1) To the
best of our knowledge, we are the first one to model the task of implant depth
prediction as video grounding, which enables us to directly predict the implant
depth, without requiring additional computation. 2) An implant region detector
(IRD) is introduced to remove the irrelevant information of CBCT, which sharply
reduces the input data size and save computational costs. 3) A Texture Perceive
Loss (TPL) is devised to enable the encoder to capture more fine-grained features
by perceiving the texture variation among slices. 4) Extensive experiments on a
large dental implant dataset demonstrated the proposed TPNet achieves superior
performance than the existing methods.

2 Method

Given a patient’s CBCT data, TPNet aims to predict a precise implant depth,
i.e., the index of start slice and end slice. An overview of TPNet is presented
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Fig. 3. The architecture of the proposed texture perceive implant depth prediction
framework.

in Fig. 3. It mainly consists of two parts: i) Implant Region Detector (IRD),
ii) Implant Depth Prediction Network (IDPNet). IRD first locates the implant
region to crop a sub-volume from the CBCT data, and the IDPNet takes the
sub-volume as input to predict the implant depth. Next, we will introduce them
in detail.

2.1 Implant Region Detector

The CBCT data contains complete information about the maxillary and mandibu-
lar bones, in which the maxillary and mandibular sinuses are irrelevant for pre-
dicting implant depth. Therefore, it is computationally intensive to train IDPNet
using the whole CBCT data. Using an IRD to detect the implant region and crop
a sub-volume according to the detection result can significantly reduce the CBCT
size. Inspired by the previous methods, we introduce a text guided implant po-
sition prediction network - TCEIP [14] as IRD. TCEIP integrates the direction
embedding form CLIP [7] to guide the prediction model to locate the implant
position, thus perform well in the patient who have multiple missing teeth. Con-
sider clinical practicality, in this paper, we design a lightweight TCEIP as IRD,
in which the knowledge alignment module and cross-modal attention module are
discarded.

The architecture of IRD is shown in Fig. 3(a), which consists of an encoder,
a decoder and a text encoder of CLIP. Firstly, ResNet-50 [2] is used as the
encoder for feature extraction, and three deconvolution layers are adopted as
the decoder to recover high-resolution features. Then, we extract the conditional
text embedding from CLIP by inputting an additional text, e.g., ’left’, ’middle’,
or ’right’ into the CLIP text encoder. In the end, the conditional text embedding
is concatenated with the last feature map of decoder to generate a gaussian
heatmap for implant position regression. We follow TCEIP to use the focal
loss [4] and L1 loss for supervision. After obtaining the implant position, we
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generate a 256×256 box centered on the implant position as the implant region,
which ensures that the texture of neighboring teeth is included. We then crop a
352 × 256 × 256 sub-volume from the original CBCT along the axial view, and
the sub-volume will be taken as the input data of IDPNet.

2.2 Implant Depth Prediction Network

The architecture of IDPNet is shown in Fig. 3(c). It mainly consists of an encoder,
a decoder and a regression head. Firstly, the encoder extracts features from the
sub-volume and the middle feature map F ∈ R

N×C×D×H×W will be extracted.
We use the proposed Texture Perception Loss (TPL) to supervise F that enables
the encoder can capture more fine-grained features by perceiving the texture
variation among slices. Then, the decoder recovers the encoder features to high-
resolution and the regression head predicts the implant depth. Next, we will
introduce them in detail.

Encoder and Decoder. We employ the widely used resblock to construct the
encoder of IDPNet. Specifically, the encoder consists of two 3D Resblocks [8]
and two 2D Resblocks [2]. The architecture of encoder and decoder are shown
in the Fig. 3(c). The 3D resblock first takes the sub-volume as input and learns
context information among slices. Then, these temporal features are fed into the
2D resblock to learn the texture feature in different slices. The output of encoder
is a feature map F ∈ R

N×C×D×H×W . Considering that the regression of implant
depth heavily relies on clearly neighboring tooth texture, which requires high-
resolution feature representations. Hence, we adopt three deconvolution layers
as decoder to consecutively upsamples the feature map.

Texture Perceive Loss. Clinically, dentists determine the implant depth ac-
cording to the texture of neighboring teeth, e.g., the bottom of the implant does
not exceed the root of neighboring teeth. Therefore, IDPNet should possess the
ability to perceive the texture variation among slices. In Fig. 2, we visualize
2D slices sampled with different sampling and compute the texture variation
among these slices by standard deviation. We can observe from the figure that
the larger the sampling interval, the more obvious such texture variations. This
observation indicates that the neighboring 2D slices have a similar feature, while
the distant slices have a big difference in features. Drawing inspiration from this
observation, in this paper, we propose a Texture Perceive Loss (TPL), which
assists the encoder learns more robust features.

The details of TPL is given in the Fig. 3(d). Specifically, we first reduce the
channel C of F to 1 and reshape the channel D to D

′

, to restore the information

of channel D. By this means, the pre-processed F̂ ∈ R
N×D

′

×H×W is obtained.
Then, we apply the Canny operator for F̂ to extract textures along the channel

D
′

. After obtaining a series of texture matrix M ∈ R
N×D

′

×H×W , we perform
the consistency loss Lcon for the neighboring matrix to close these features, and
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the inconsistency loss Licon for the distant matrix to distinguish these features.
LTPL is the summation of Lcon and Licon, and we implement Lcon and Licon

by L2 loss. In our implementation, we set the sampling interval k of the distant
matrix as 10.

Regression Head. The regression head is designed to predict the implant
depth, which is implemented by two convolutions followed by the activation
function, i.e., ReLU. We use the L1 loss to optimize the regression head:

Lreg =

Np∑

j=1

|yj − ŷj |, (1)

where j is the patient index in a mini-batch and Np is the total number of
patient. yj = (sj , ej) and ŷj = (ŝj , êj) is the predicted and ground-truth index
of start and end implant slice, respectively.

As discussed in previous sections, we model implant depth prediction as the
task of video grounding. Therefore, we follow the video grounding to introduce
the temporal iou loss [18] to supervise the regression head:

Ltiou = 1−
ŷj ∩ yj

ŷj ∪ yj
. (2)

The rationale of Ltiou is to maximize the overlapping between the predicted
slice index and its ground truth. The overall training loss of IDPNet is:

Ltotal = Lreg + Ltiou + LTPL (3)

3 Experiment

3.1 Dataset and Implementation Details

We evaluate the proposed TPNet on a collected dental implant dataset. The
dataset contains 400 patients, in which 80% data were selected as the training set
and the remaining 20% as the testing set. All the CBCT data were captured using
the KaVo 3D eXami machine, manufactured by Imagine Sciences International
LLC. The original CBCT size is 432×776×776. For the traing of IRD, we follow
TCEIP to use the 2D slice of CBCT and resize them to 512 × 512 for training
and inference. After the data pre-processing of IRD, the size of CBCT data for
each patient is reduced to 352× 256× 256.

For the training of IRD, we use a batch size of 8, Adam optimizer and a
learning rate of 0.001. Total training epochs is 80 and the learning rate is divided
by 10 when epoch = {40, 60}. Three data augmentation methods, i.e. random
crop, random scale and random flip are employed. For the training of IDPNet,
we use a batch size of 1, SGD optimizer and a learning rate of 0.001. As the
asymmetric structure of the upper and lower jaws, only the horizontal flip is
applied for data augmentation. IDPNet is trained for 40 epochs and the learning
rate is divided by 10 at 20th and 30th epochs, respectively. All the models are
trained and tested on the platform of NVIDIA A100 GPU.
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Table 1. The ablation experiments of each components in IRD.

Network Knowledge Alignment Cross-modal Attention AP75↑ FLOPs(G) ↓

IRD

! ! 18.4 67.48

! ✗ 17.1 56.88

✗ ! 16.8 66.81
✗ ✗ 16.2 56.21

Table 2. Performance comparison of different loss function.

Lreg Ltiou LTPL
Acc(R@1, IoU=m)

m=0.6 m=0.7 m=0.8

! ✗ ✗ 28.8 23.7 15.3

! ! ✗ 35.6 28.8 16.9

! ! ! 33.9 25.4 20.3

3.2 Performance Analysis

In our task, the kernel of the implant should not invade the mandibular nerve
canal and should maintain a minimum safety distance of 1.5mm. Therefore, as
long as the center point of the implant root conforms to this rule, it is a good
prediction. We follow previous work [1, 5, 6] to adopt Acc(R@1, IoU=m) as the
performance evaluation metric, which represents the percentage accuracy of top-
1 predicted moments whose IoU with the ground-truth moment is larger than
m. We set the IoU threshold values m={0.6, 0.7, 0.8}.

Ablation Studies of IRD. As the IRD is used as pre-processing method to
crop CBCT data for IDPNet, an approximate planting area is sufficient but re-
quires quick inference speed. To evaluate the effectiveness of the proposed IRD,
we conduct ablation experiments to investigate the effect of removing compo-
nents in IRD, results are given in Table 1. AP75 and FLOPs are used as evalu-
ation metrics. We can observe from the table that removing both modules will
result in a 2.2% performance decrease, but FLOPs is decreased by 11.27. This
results meet with the requirement and demonstrate that the proposed IRD is
effective and lightweight for clinical practice.

Ablation Studies of Loss Function. To demonstrate the effectiveness of the
proposed loss function, we conduct ablation experiments to investigate the effect
of each loss function in Table 2. We can observe from the second row of the table
that using temporal iou loss alone will lead to regression failure. When combin-
ing both regression loss and temporal iou loss, the accuracy (m=0.8) improves
by 1.6%. When the TPL loss is introduced, the improvement reaches to 5.0%.
Although the accuracy of smaller IoU thresholds has decreased, high IoU thresh-
old is required in clinical practice. This results demonstrate the effectiveness of
TPL loss, which enables the encoder to perceive the texture variation among
slices.
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Table 3. Performance comparison to the video grounding methods.

Method Visual Feature
Acc(R@1, IoU=m)

m=0.6 m=0.7 m=0.8

TSP-PRL [10] C3D 33.1 26.8 18.6
MAN [16] I3D 32.6 23.1 15.8

VSLNet [17] I3D 31.2 23.5 17.1
DRN [15] I3D 34.5 21.7 16.3

TPNet(ours) - 33.9 25.4 20.3

Fig. 4. Detection results of TPNet trained with or without TPL loss.

Visual Comparison. To further validate the effectiveness of the proposed TPL
loss, in Fig. 4, we visualize the prediction result of TPNet with or without
training by the TPL loss. From the figure we can observe that the introduction
of TPL predict more precise start and end slices of the implant, due to the
perception capability of texture variation.

Comparison to the Video Grounding Methods. As previously discussed,
we model the task of implant depth prediction as video grounding. To demon-
strate the superior performance of the proposed method, we compare TPNet
with other state-of-the-art video grounding methods in Table 3. Specifically, we
choose different visual feature based methods, e.g., the C3D-based method, TSP-
PRL, and the I3D-based methods, MAN, VSLNet and DRN. From the table we
can observe that, the C3D-based method perform better than the I3D-based
networks in high iou threshold (e.g., TSP-PRL achieved 18.6% Acc, which is
1.5% higher than the best-performing I3D-based network - VSLNet). The pro-
posed TPNet achieves the best accuracy of 20.3%, among all benchmarks. The
experimental results proved the effectiveness of our method.

4 Conclusions

In this paper, we simplify the task of implant depth prediction as video ground-
ing, and develop a texture perceive implant depth prediction network (TPNet).
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TPNet consists of an implant region detector (IRD) and an implant depth pre-
diction network (IDPNet). IRD is an object detector designed to reduce the size
of CBCT by cropping a probable implant region from CBCT data. IDPNet is
devised to regress the precise implant depth. A texture consistency (TC) loss
is designed to enable the image encoder to capture more fine-grained features.
Extensive experiments on a large dental implant dataset demonstrated that the
proposed TPNet achieves superior performance than the existing methods.
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