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Abstract. Analysis and visualization of 3D microscopy images pose
challenges due to anisotropic axial resolution, demanding volumetric super-
resolution along the axial direction. While training a learning-based 3D
super-resolution model seems to be a straightforward solution, it requires
ground truth isotropic volumes and suffers from the curse of dimensionality.
Therefore, existing methods utilize 2D neural networks to reconstruct
each axial slice, eventually piecing together the entire volume. However,
reconstructing each slice in the pixel domain fails to give consistent
reconstruction in all directions leading to misalignment artifacts. In this
work, we present a reconstruction framework based on implicit neural
representation (INR), which allows 3D coherency even when optimized by
independent axial slices in a batch-wise manner. Our method optimizes
a continuous volumetric representation from low-resolution axial slices,
using a 2D diffusion prior trained on high-resolution lateral slices without
requiring isotropic volumes. Through experiments on real and synthetic
anisotropic microscopy images, we demonstrate that our method surpasses
other state-of-the-art reconstruction methods. The source code is available
on GitHub: https://github.com/hvcl/INR-diffusion.
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1 Introduction

High-resolution 3D microscopy images are widely used in biomedical research
to reveal micro- to nano-scale structures in tissue samples. However, their axial
resolution is often coarser than their lateral resolution due to physical limita-
tions such as tissue sectioning or light diffraction. This substantial difference
in resolution, which can be up to an order of magnitude, results in significant
visual artifacts when the samples are viewed from the side, making analysis
and downstream tasks difficult. Therefore, there is a growing need for isotropic
reconstruction of 3D microscopy images, also known as axial super-resolution
(SR).
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Interpolation and deconvolution algorithms are traditional axial reconstruction
methods that offer quick solutions without the need for a training process.
However, they often produce suboptimal, blurry results, particularly for data
samples rich in texture. More recent deep-learning methods can alleviate this issue,
such as supervised training of a 3D neural network using anisotropic/isotropic
paired 3D training data [4]. However, training a 3D neural network faces two major
challenges: the lack of 3D isotropic training data and the high cost of training
a 3D neural network. Since directly using a 3D neural network is challenging,
recent studies utilize 2D neural networks and generative models. Weigert et
al. [20, 21] proposed training a 2D U-Net[15] with the lateral images of the
target 3D volume and then reconstructing the axial slices individually. Deng
et al. [1] utilized Cycle-GAN to learn the degradation process between axial
and lateral images, then applied this knowledge to train a 2D super-resolution
model for reconstructing the axial slices. More recently, advanced generative
models, such as diffusion models [5], are actively adopted to improve the axial
SR quality, either by reconstructing the 3D volume in a slice-by-slice manner [7,
12] or approximating the 3D data prior with the product of two perpendicular
2D diffusion priors [8]. Nevertheless, as the reconstructed slices are not implicitly
connected, approximating the volume with individual slices might fail to capture
the 3D coherency of the volume and often cause misalignment artifacts.

To overcome the above limitations, we propose a novel axial SR method
based on implicit neural representation(INR), which is a multi-layer perceptron
that maps continuous spatial coordinates (x, y, z) to their intensity value. INR
has shown great success in inverse rendering which allows reconstruction in a
continuous volumetric representation from discrete measurements [11] and was
later applied to diverse medical imaging reconstruction problems [16, 14, 10, 22].
Instead of using a 2D diffusion model to directly reconstruct a 3D isotropic
volume in the pixel domain, our idea is to optimize the INR using a 2D diffusion
model via score distillation sampling to implicitly learn 3D spatial coherency
across the volume. To evaluate the effectiveness and practicality of our approach,
we conducted extensive experiments on various datasets with high anisotropic
axial scaling factors (×8, ×10). Our experiments included FIB25 for simulation
studies, CREMI for a real anisotropic electron microscopy image of Drosophila
brain tissue, and a real two-channel fluorescent microscopy image of Zebrafish
retina cells. We compared our method with other state-of-the-art techniques to
show its reconstruction quality and effectiveness. The results demonstrate that
our method produces results that are not only detailed and reliable but also
accurate to the low-resolution data.

2 Method

The overview of our proposed model is illustrated in Fig. 1(top). As 3D anisotropic
volume does not exist, we pre-train a 2D diffusion model with high-resolution
lateral slices(XY). Once we have a diffusion model, we train an INR by querying
axial slices(ZX or ZY) and fitting it to two loss functions: the measurement con-
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Fig. 1. (top): The overview of our framework. First, we train the diffusion model
using XY slices of the anisotropic volume, where the Z resolution significantly degrades
compared to the XY resolution. During the optimization process of the INR, we randomly
sample batches of ZX,ZY planes and optimize the loss. (bottom): The evolution of
applying the diffusion prior: queried image(first row), t-step noisy image(second row) and
the scaled difference between the original image and the refined output of the diffusion
model. The discrepancy between the image before and after passing the diffusion model
provides a guiding direction.

sistency loss and a diffusion prior loss. The measurement consistency loss ensures
that the queried image matches the low-resolution measurement after passing
the forward degradation process. By utilizing the score distillation sampling[13,
9], we incorporate the lateral image pre-trained diffusion model as an image
prior for sharp and detailed reconstruction. A more detailed description of each
component of our method is provided in the following sections.

2.1 Implicit neural representations for isotropic volume
reconstruction

Implicit neural representations encode a spatial data field into the weights of a
neural network; in other words, the model learns to map spatial coordinates of a
pixel(x, y, z) to its data (e.g., intensity) values. The function is parameterized
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by ϕ and defined as fϕ : c → fϕ(c), where the input c ∈ Rd is the d dimension
spatial coordinates(d = 3 for (x, y, z)) and the output fϕ(c) ∈ R is the scalar
intensity value for the given the position. The input spatial coordinates are
initially projected to a higher-dimensional space, and then processed through
a multi-layer perceptron(MLP) architecture, returning an intensity value as an
output. As the coordinates are implicitly connected via a neural network, training
the MLP can be conducted using separate slice and coordinate pairs.

Consider reconstructing an isotropic volume in the pixel space where it can be
approximated as reconstructing N sequential axial slices(ZX or ZY). Each of the
N 2D reconstruction problem is formulated as yn = Axn+ϵ where xn represents
the n-th unseen isotropic slice, yn is the n-th downsampled slice(measurement)
with additive noise ϵ and A is the Z direction degradation matrix shared along
all the slices. One can reconstruct the n-th axial slice x∗

n by solving the equation

x∗
n = argminx ||Ax− yn||22 +R(x) (1)

where the first term ensures data fidelity by maintaining consistency between x
and y, while the second term represents image regularization which incorporates
prior knowledge of the image. Reconstructing the N slices independently and
subsequently concatenating them together as a volume can lead to misalignments
due to the highly ill-posed nature of each reconstruction problem. Instead, we
optimize a single coordinate-based INR to fit the n equations. This approach
enables the INR to implicitly learn 3D spatial coherency.

To train the MLP, we randomly query a n-th axial plane fϕ(cn) by forwarding
its spatial coordinates cn and minimize a loss that resembles Eq. 1

L(ϕ) = En

[
||Afϕ(cn)− yn||22 + λR(fϕ(cn))

]
(2)

where λ balances the strength between data fidelity and the regularization loss.
Often choices of R(·) is the total-variation(TV) loss which gives smoother recon-
struction. However, in this study, we apply a diffusion prior for the regularization
term which allows realistic and detailed reconstruction. The formulation of this
diffusion regularization will be discussed in the next section.

2.2 Diffusion models and score distillation sampling

Diffusion models first establish a T -step Markovian forward process, gradually
perturbing an image with gaussian noise until it approaches to xT ∼ N (0, I)[5,
2]. The transistion of x0 to xt can be expressed in a closed form of

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (3)

where βt, αt = 1− βt and ᾱt =
∏t

s=1 αs are the noise scheduling hyper param-
eters. During the reverse process, it generates an image by sampling from an
approximated posterior distribution pθ(xt−1|xt) ≈ q(xt−1|xt,x0), which can be
effectively achieved by training a noise predicting model parameterized by θ that
minimizes a (simplified unweighted)loss:

L(θ) = Eϵ,t

[
||ϵ− ϵθ(xt, t)||22

]
, ϵ ∼ N (0, I) (4)
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This formulation represents unconditional diffusion models.
We pre-train an unconditional diffusion model θ with the lateral high-resolution

slices to learn the high-resolution image prior. With Score Distillation Sam-
pling(SDS)[13], we can optimize an INR such that the queried images conform to
the pre-learned image prior of θ. We first query a random axial slice xn = fϕ(cn)
and sample a Gaussian noise ϵ ∼ N (0, I). Following Eq. 3, we add the Gaussian
noise to generate a t-step noisy image xt =

√
ᾱtx +

√
1− ᾱtϵ (subscript n is

omitted from here onwards). By forwarding xt through a frozen diffusion model
and minimizing the loss function Eq. 4 with respect to ϕ(INR),

∇ϕL(ϕ, θ) = Eϵ,t

[
(ϵ− ϵθ(xt, t))

∂ϵ̂θ(xt, t)

∂xt

∂xt

∂ϕ

]
≈ Eϵ,t

[
(ϵ− ϵθ(xt, t))

∂xt

∂ϕ

]
(5)

we optimize the MLP so that it follows the diffusion prior. Note that the Jacobian

of the diffusion model, ∂ϵ̂θ(xt,t)
∂xt

, is omitted which was proven to show comparable
performance with much lower computational cost. Intuitively speaking, we are
optimizing the INR to minimize the difference between the original queried image
and the refined image after passing the diffusion model. By applying the SDS as
a regularization in Eq. 2, we are able to train an INR representing an isotropic
volume that accurately fits the measurements while preserving high levels of
detail:

L(ϕ, θ) = En,ϵ,t

[
||Afϕ(cn)− yn||22 + λstopgrad(ϵ− ϵθ(xt, t))

⊺fϕ(cn)
]

(6)

where xt =
√
ᾱtfϕ(cn) +

√
1− ᾱtϵ is the t-level noisy image and stopgrad is

used to represent the gradient Eq. 5 in the form of a loss function.
We linearly decrease the level of noise starting from 500(or 250) as the

optimization progresses, t = 500, 499, .., 1. At the initial steps of the optimization,
higher regularization of the diffusion model is applied, while towards the end,
only fine details are tuned as shown in Fig. 1(bottom).

3 Experiments

3.1 Datasets and implementation details

We evaluate our framework by conducting a performance evaluation on three
volumetric microscopy datasets. We use FIB-25 which is an isotropic FIB-SEM[18]
dataset to conduct simulation studies (i.e., making synthetic downsampled data)
for quantitative evaluation. For our real-world data applications, we use CREMI[3],
which is a ssTEM data with an axial downsampling factor of 10, and a two-channel
fluorescence microscopy image of a zebrafish retina sampled at a downsampling
factor of 10.2 [6, 21]. As there is no isotropic ground-truth data available for those
two datasets, we only conducted qualitative assessments on them. We use linear
interpolation as our baseline method.

We compare our framework with state-of-the-art isotropic reconstruction
methods which are all based on diffusion models. We use a same diffusion
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Table 1. Quantitative Comparison with other methods. With a Gaussian filter
(σz/σxy = 4/0.5) and a downsampling rate of 8, the isotropic FIB25 volume is simulated
to an anisotropic resolution of 32× 256× 256. The baseline is linear interpolation. The
highest scores are highlighted in bold and the second is underlined.

Method
ZX ZY XY

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Baseline 26.38 0.544 0.535 26.38 0.541 0.539 26.51 0.585 0.398

Lee et al.[7] 28.62 0.665 0.423 28.63 0.664 0.416 28.78 0.688 0.278
DiffuseIR[12] 26.16 0.524 0.456 26.16 0.517 0.527 26.34 0.548 0.411
TPDM[8] 28.57 0.663 0.357 28.58 0.661 0.356 28.65 0.687 0.296

Ours 28.78 0.667 0.410 28.78 0.664 0.406 28.88 0.688 0.359

model for all the methods including ours. Before starting the reconstruction(or
optimization) the shared diffusion model is pre-trained with only 2D lateral
images of the target volume where there is no isotropic volume to use as a
reference. The diffusion model is trained using the backbone and setting of [5]
where T = 1000 and the learning rate is 0.00002. For the methods[7, 12] that
take a slice-by-slice approach we reconstruct ZX slices along the y axis.

Considering that our microscopy images contain lots of high-frequency details,
we implement the INR with an MLP consisting of sine activation [17] layers and
a Gaussian Fourier feature embedding at the beginning [19] to capture the fine
details. The MLP comprises a fully connected layer with a width of 768 and
a depth of 8, along with a 512-dimensional random Gaussian Fourier feature
embedding sampled from a standard deviation of 16. For the CREMI and FIB-25
datasets, we set the strength of the diffusion regularizer as λ = 0.25, with a
decreasing level of noise starting from t = 500 to t = 1. The MLP is trained
with a learning rate of 0.00001 for 500 epochs, allowing the model to observe the
volume 500 times. The volume is divided into batches of 8 random axial slices,
and the reconstruction direction (ZX or ZY) is alternated with each iteration.

The training protocol remains consistent for the two-channel fluorescence
microscopy volume, except that the MLP returns two outputs for each channel
and is trained for 200 epochs.

3.2 Simulation studies on FIB25

We randomly extracted a 512×512×512 sub-volume, convolved it with a 3D
Gaussian filter stretched in the Z-direction with a standard deviation of 4, and
then downsampled it by selecting every 8 lateral slices along the Z-direction to
simulate a 64×512×512 anisotropic volume. The 64 lateral images are used to
train the diffusion model, wherein they are randomly cropped to a size of 256×256.
We reconstruct a subpart of the training volume of size 32×256×256 and evaluate
ZX, ZY, XY planes with PSNR, Structural similarity index measure(SSIM), and
LPIPS [23] to assess human perceptual quality.

Table 1 shows that our framework offers the highest PSNR/SSIM score.
TPDM [8], which is a diffusion model based SOTA 3D reconstruction method
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Fig. 2. Visual comparison of reconstructing the simulated FIB25 volume with a down-
sampling factor of 8. The volume is viewed in the ZY direction. All methods except
ours show disconnection in the intersection.

originally used for MRI Z-axis SR, shows the highest LPIPS score showing
texture-rich reconstruction, however it falls behind in PSNR/SSIM. This indicates
that our method produces more reliable results with less hallucination which is
common in generative models. Fig.2 also demonstrates that our method yields
more reasonable results for uncertain regions. This can be attributed to the
implicit 3D connectivity of the INR. During the alternating optimization with ZX
and ZY slices, information exchange occurs, complementing the uncertainty of
each region. Moreover, the implicit 3D coherency prevents misalignments, unlike
DiffuseIR, which suffers from severe artifacts due to separate reconstruction of
ZX slices. By indirectly applying the diffusion model, our method is capable of
capturing both high-frequency details and structural information while preserving
data consistency.

3.3 Real world anisotropic volumes

We reconstruct two real anisotropic microscopy images to demonstrate the
practical usage of our method. Both datasets have dimensions of 26×256×256,
and our goal is to restore them to dimensions of 256×256×256. Since we do not
have prior knowledge of the degradation process, we assume linear downsampling
for all methods.

In the CREMI data, severe downsampling rates lead to disconnections between
horizontal structures. While other methods fail to restore these disconnections,
our method successfully addresses this issue. As shown in Fig.3(row1), boundary
disconnection is commonly shown in other methods, whereas in our case they
are smoothly connected. Furthermore, while hallucinations may occur when the
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Fig. 3. (row1): Visual comparsion of reconstructing real anisotropic electron microscopy
image with a downsampling factor of 10. Inside the red circle shows an example of
hallucination. As there is no ground truth image, we use the lateral slices(XY) as a
reference. (row2): A merged fluorescence microscopy image of a zebrafish retina cell
composed of two channels: the red channel representing the nuclei and the green channel
representing the nuclear envelope.

diffusion model directly generates the reconstructed result, our method utilizes
the diffusion model only as a regularizer indirectly, thereby avoiding such cases.

The zerbrafish retina image consists of two channels where the nuclei and
nuclear envelope is seperatley imaged. In such situations, the INR shows strong
adaptability because it can easily share information between different channels.
By leveraging the correlation between the channels, it allows not only proper
channel alignment but also mutual complementation. The second row of the
figure proves that our approach effectively eliminates the disconnection artifacts
on the nuclear envelope and accurately aligns it with the inner side.

4 Conclusion and Future work

We introduce a microscopy axial super-resolution framework that utilizes 2D
diffusion models, eliminating the need for an isotropic 3D volume. By employing
score distillation to enforce a 2D diffusion prior on an implicit neural representa-
tion, we can efficiently reconstruct the volume without the lose of 3D coherency.
Through evaluation on three datasets, we demonstrate the superior reconstruc-
tion capabilities of our framework compared to other state-of-the-art diffusion
model based methods. Results show that our method not only generates detailed
reconstructions but also ensures reliability with reduced risk of hallucination.

While our method utilizes SDS, which does not require back-propagation
through the diffusion model, optimizing the INR involves fitting the volume
hundreds of times, resulting in a bottleneck in training time. Future research will
focus on achieving faster optimization by adapting advanced techniques for both
the diffusion model and the INR.
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