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Abstract. Recently, vision-language pre-trained models have emerged
in computational pathology. Previous works generally focused on the
alignment of image-text pairs via the contrastive pre-training paradigm.
Such pre-trained models have been applied to pathology image classi-
fication in zero-shot learning or transfer learning fashion. Herein, we
hypothesize that the pre-trained vision-language models can be utilized
for quantitative histopathology image analysis through a simple image-
to-text retrieval. To this end, we propose a Text-based Quantitative and
Explainable histopathology image analysis, which we call TQx. Given
a set of histopathology images, we adopt a pre-trained vision-language
model to retrieve a word-of-interest pool. The retrieved words are then
used to quantify the histopathology images and generate understandable
feature embeddings due to the direct mapping to the text description.
To evaluate the proposed method, the text-based embeddings of four
histopathology image datasets are utilized to perform clustering and clas-
sification tasks. The results demonstrate that TQx is able to quantify and
analyze histopathology images that are comparable to the prevalent vi-
sual models in computational pathology. The repository is available at
https://github.com/QuIIL/TQx.

Keywords: Computational pathology · Vision-language model · Image-
to-text retrieval.

1 Introduction

Over the past years, the success of deep learning models has been attributable
to the single-modal pre-trained models in computer vision and natural language
processing. In computer vision, various convolutional neural networks (CNNs)
[1–3] and Vision Transformer (ViT) [4–6], known as vision models, are pre-
trained on ImageNet and have been successfully applied to a wide range of
downstream tasks such as image classification, retrieval, and segmentation [7].
In natural language processing, several pre-trained language models such as
BERT [8] and GPT [9] are available and have shown to be effective in many text-
based applications, including text classification, question answering, translation,
and summarization [10]. Recently, there exists an emerging practice of fusing
the vision and natural language models, which forms vision-language models
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(VLMs). VLMs are, in general, pre-trained on an extensive collection of image-
text datasets by jointly learning visual and textual modalities/knowledge. A
notable example is CLIP [11], which simultaneously optimizes vision and lan-
guage models to align the visual and textual representations. Computational
pathology is not an exception. PLIP [12] and QUILT-Net [13] are two exemplary
VLMs that were pre-trained on massive histopathology datasets with pairs of
histopathology image and histopathology description via the contrastive learn-
ing paradigm similar to CLIP. Such VLMs build a solid foundation for various
types of downstream tasks. In particular, these models have been successfully
applied to several image classification tasks such as lymph-node metastasis de-
tection, tissue phenotyping, and Gleason grading [12, 13] without further training
or fine-tuning, i.e., zero-shot image classification.

We have observed that the existing works on VLMs have mainly focused on
the pre-training process and straightforward, direct application to downstream
tasks [11–14]. Some have sought to utilize VLMs with transfer learning and
knowledge distillation [15, 16]. These approaches are, by and large, similar to the
way the pre-trained vision models and language models are used, which do not
fully explore the potential of VLMs. Herein, we hypothesize that the pre-trained
VLMs per se are capable of conducting quantitative histopathology image anal-
ysis. In other words, VLMs are able to quantify histopathology images, and the
resultant quantitative features can be used for downstream tasks. To test our hy-
pothesis, we propose a Text-based Quantitative and Explainable histopathology
image analysis framework, called TQx. We systematically evaluate the effective-
ness of TQx using four histopathology image datasets by performing clustering
and classification tasks. The experimental results suggest that TQx not only
provides a capacity for quantifying and analyzing histopathology images compa-
rable to the conventional vision models but also permits the direct interpretation
of the results with human-readable words.

2 Methodology

TQx involves two major components: 1) a pre-trained VLM and 2) a word-of-
interest (WoI) pool. The VLM has a text encoder and a visual encoder that
was jointly optimized via contrastive learning [11]. The WoI pool includes a set
of pathology terms that explain the characteristics of histopathology images.
Overall, by utilizing cosine similarity, the VLM retrieves relevant keywords from
the WoI pool, then the text-based image embedding is generated from these
keywords (Fig. 1). The most important step is to filter the related terms because
they directly affect the generation of the text-based representation. Therefore,
in the following sections, we will explain this procedure in detail.

2.1 Text-based image representation

Suppose that we are given a pre-trained VLM V, a set of pathology images
X = {xi}Ni=1, and a WoI pool W = {wj}Nw

j=1 where xi is the ith histopathology
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Fig. 1. The raw WoI pool stores all UMLS [17] pathology terms of various semantic
types. The filtered pool is obtained by selecting a particular semantic type under con-
sideration. The pair of encoders from a pre-trained VLM generates text and visual
embeddings, which are then compared together. The similarity scores from the com-
parison are normalized and then used as weights to produce a text-based embedding.

image, wj is the jth keyword, and N and Nw are the number of histopathology
images and keywords, respectively. Each xi undergoes the visual encoder of V
to produce the visual embedding vi, and each wj is fed into the text encoder of
V to generate the corresponding text embedding fj . For all (vi, fj), we compute
the similarity scores, producing S = {si,j |i = 1, ..., N ∧ j = 1, ..., Nw} where
si,j denotes the similarity between xi and wj . Using S, we select the top-M
keywords WM = {w′

i}Mi=1 that are most representative of X . For each image xi,
we first compute the rank of the keywords in W as follows: ∀(j, k), ri,j < ri,k if
si,j < si,k where ri,j ∈ {1, ..., Nw} is the rank of wj for xi. Then, we average the
rank of the keywords among X to select a set of M keywords with the highest
ranks, designated as WM = {w′

i}Mi=1, and use it to produce the corresponding
text embeddings FM = {f ′j}Mj=1 and their similarity scores SM = {s′i,j |i =
1, ..., N ∧ j = 1, ...,M}.

To obtain the text-based image representation for each xi, we normalize the
similarity scores between xi and all the keywords in WM , i.e., {s′i,j}Mj=1, using the
softmax operation to produce weights for the text embeddings {αj}Mj=1. Then,
we compute a weighted sum of the text embeddings to generate the final text-
based image embedding of xi given by fTi =

∑M
j=1 αjf

′
j . The text-based image

embedding fT delivers the abstract textual information of the input image, which
can be used for quantitative analysis. The top-M keywords WM are human-
readable and -understandable, thus enabling the interpretation of the results.
Therefore, the text-based image embedding is self-explainable per se.

2.2 Construction of word-of-interest pool

To construct the WoI pool, we utilize QUILT-1M [13], the largest image-text
dataset in pathology containing a wide range of pathology keywords. First, we
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collect all keywords (called entities) from QUILT-1M, then cross-check and pro-
cess with standard terms in the Unified Medical Language System (UMLS) [17].
After eliminating the duplicate terms using the UMLS concept unique identifier
(CUI), we obtain the raw WoI pool of 28,292 keywords, which is designated as
WLevel−0.

2.3 Refinement of word-of-interest pool

In the raw WoI pool WLevel−0, each keyword is associated with the corresponding
UMLS semantic type that defines its category, such as Tissue, Cell, or Neoplastic
Process. In the UMLS, these entities are categorized based on the tree-like se-
mantic network, and thus, one semantic type may include one or more sub-types
or -groups. For example, Fully Formed Anatomical Structure contains multiple
smaller sub-groups such as Cell, Tissue, and Cell Component. Each semantic
(sub-)type has its own histopathology meaning.

To investigate the impact of the WoI pool and the semantic category on TQx,
we choose three UMLS semantic types that are relevant to pathology diagnosis:
1) Neoplastic Process: abnormal growth of tissue, 2) Disease or Syndrome: an
abnormal condition of an organism, and 3) Pathologic Function: a disordered
process, activity, or state of the organism or part of it. Then, we construct
three WoI pools including WLevel−3 (Neoplastic Process), WLevel−2 (Disease
or Syndrome), and WLevel−1 (Pathologic Function) with 2,215, 5,441, and 6,232
keywords, respectively. In total, we build four WoI pools. For each of the four WoI
pools, we retrieve the top-M highly ranked keywords with M = 1000, resulting
in WM

Level−0, WM
Level−1, WM

Level−2, and WM
Level−3. WM

Level−0 (raw WoI pool) is
the most inclusive and general while WM

Level−3 (Neoplastic Process) is the most
confined and specific. Moreover, using the four WoI pools, we generate the four
sets of text-based feature embeddings: FWM

Level−0 , FWM
Level−1 , FWM

Level−2 , and
FWM

Level−3 .

2.4 Pre-trained vision-language model

We adopt QUILT-Net [13] as the VLM V for histopathology image analysis due
to its superior performance compared to state-of-the-art VLMs such as CLIP and
PLIP. In QUILT-Net, the visual encoder is constructed based on ViT-B/32 [4],
which splits input images into 32x32 tiles and forwards through 12 self-attention
layers with 12 heads. The text encoder inherits an architecture of GPT-2 [18]
with 12 self-attention layers with 8 heads. These encoders are initialized with
the weights of CLIP and then fine-tuned with QUILT-1M.

3 Experiments

3.1 Datasets

We employ four different public datasets to analyze the effectiveness of TQx. The
first dataset, called Colon [19], is a colorectal cancer grading dataset, which
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Table 1. Silhouette coefficients of clustering with visual embedding and text-based
embedding from four different WoI pools.

Embedding Colon [19] WSSS4LUAD [20] BACH [21] Bladder [22]
Visual 0.13 0.13 0.10 0.17
Text - WM

Level−0 0.25 0.26 0.21 0.27
Text - WM

Level−1 0.27 0.30 0.25 0.25
Text - WM

Level−2 0.28 0.29 0.25 0.23
Text - WM

Level−3 0.28 0.30 0.24 0.20

includes 9,857 patches of size 512 x 512 with four classes: benign (BN), well-
differentiated cancer (WD), moderately differentiated cancer (MD), and poorly
differentiated cancer (PD). WSSS4LUAD [20] is the second dataset for lung
cancer detection. We extracted 3,526 patches of size 224 × 224 that are la-
beled as normal (NOR) or tumor (TUM). The third dataset is BACH [21] that
contains 58,539 images of size 1024 x 1024 for breast cancer staging with four
categories: normal (NOR), benign (BN), in situ carcinoma (SITU), and inva-
sive carcinoma (IVS). The last dataset Bladder [22] is designed for bladder
cancer grading, comprising 14,258 patches of size 512 × 512 that are annotated
as normal (NOR), low-grade cancer (LOW), and high-grade cancer (HIGH).

3.2 Analysis of text-based image representation

To investigate the effectiveness of the text-based image representation, we con-
duct two tasks: 1) Clustering and 2) Classification. Both tasks are evaluated for
four aforementioned WoI pools. To compare between visual and text-based em-
beddings, we adopt a pair of visual and textual encoders from QUILT-Net [13].
For clustering, we employ Lloyd’s K-Means method [23], where K is set to a
number of classification classes. K-Means++ is used for cluster initialization,
with the maximum number of iterations is set to 300. We evaluate the cluster-
ing quality using silhouette coefficients and further assess the results visually
through t-SNE [24].

For classification, we construct a simple multi-layered perceptron with two
fully-connected layers, a ReLU activation function, and a batch normalization
layer. The classifier is trained for 300 epochs using Adam optimizer with a learn-
ing rate 0.01. For Colon, Bladder, and BACH, four evaluation metrics are em-
ployed: accuracy (Acc), accuracy cancer (Accc), macro-averaged F1 score (F1),
and quadratic-weighted kappa score (Kw). For WSSS4LUAD, Acc, F1, precision
(Pre), and recall (Rec) are used. The experiments are replicated with 50 dif-
ferent initialization seeds to calculate the mean and standard deviation of each
evaluation metric.
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Fig. 2. Clustering results with WM
Level−3 (Neoplastic Process) of (a) visual embeddings

and (b) text-based image embeddings. In the Ground Truth plots, samples are re-
assigned to the clusters using the ground truth class labels. The bottom numbers show
silhouette coefficients measuring how similar an embedding is to its own cluster.

4 Results and Discussion

4.1 Clustering

Fig. 2 visualizes the clustering results for WM
Level−3 using t-SNE, and Table

1 shows the silhouette coefficients of the four datasets. The results show that
the text-based image embeddings well formed the clusters corresponding to the
ground truth class labels across the datasets. It was striking that the silhouette
coefficients of the text-based image embeddings were consistently larger than
those of the visual embeddings such that ≥0.12, ≥0.13, ≥0.11, and ≥0.03 for
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Fig. 3. The bar plots show the percentage of samples per class in each cluster, based
on the clustering with WM

Level−3 (Neoplastic Process). Five keywords with the highest
average ranks are shown next to the corresponding bar plot.

Colon, WSSS4LUAD, BACH, and Bladder, respectively. Among the text-based
image embeddings, FWM

Level−0 generally obtained the worst results, whereas oth-
ers were comparable to each other.

Fig. 3 depicts the percentage of data samples per class and the top-5 key-
words within each cluster. We made the following observations. Each cluster was
dominated by one or two categories that are related to each other; for example,
Colon Cluster 4 was dominated by WD and MD, and TUM was predominant
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in WSSS4LUAD Cluster 2. Non-cancerous samples were clearly separated from
cancerous samples across the four datasets; for example, most of BN belonged to
Cluster 2 for Colon, and most of NOR and BN resided in Cluster 1 and Cluster 2
for BACH, respectively. Furthermore, we analyzed the top-5 matching keywords
per cluster. The keywords generally matched the type of dataset. For instance, in
Colon, Cluster 2, dominated by BN, was associated with Hamartomatous polyp
and Hyperplastic polyp that are non-cancerous, and other clusters (Cluster 1, 3,
and 4), mainly containing cancers, were matched with cancer-related keywords
such as Grade 3 Colorectal Adenocarcinoma and Colorectal Intraepithelial Neo-
plasia. For WSSS4LUAD, BACH, and Bladder, most of the clusters were shown
to be highly relevant to cancer-related terms. Some of them are specific to the
original organ, such as Secondary malignant neoplasm of lung for WSSS4LUAD
and Invasive Ductal Breast Carcinoma for BACH. Some others were related to
different organs; for example, Pancreatic Ductal Adenocarcinoma for BACH and
Metastatic malignant neoplasm to adrenal gland for Bladder. Though cancer-
related terms were prevalent, the clusters representing BN and/or NOR were
often aligned with benign, slow-growing tumors such as Pleomorphic hyalinizing
angiectatic tumor (slow-growing tumor) and Lipofibromatosis (benign soft tissue
tumor).

4.2 Classification

The classification results on the four datasets are shown in Table 2. For Colon
and BACH, the visual embeddings performed best, outperforming the text-based
image embeddings over the four evaluation metrics in Colon and three evaluation
metrics (Acc, Accc, and F1) in BACH. For WSSS4LUAD, FWM

Level−3 achieved
the best performance in Acc, Accc, and F1. As for Bladder, the visual em-
beddings and text-based image embeddings were comparable to each other; the
visual embeddings obtained the best Acc and Kw, while the highest Accc and
F1 were attained by the text-based image embeddings (FWM

Level−0).
Among the four types of the text-based image embeddings, FWM

Level−3 , in gen-
eral, achieved the best performance and FWM

Level−0 was inferior to others except
for Bladder. Hence, the more specific the WoI pool is, the better performance we
tend to obtain. This indicates that the performance of the embeddings depends
on the selection of the WoI pool, and the well-defined WoI pool could further
improve the histopathology image analysis by instructing the specific patterns
in histopathology images.

5 Conclusions

Herein, we propose TQx, a text-based quantitative and explainable histopathol-
ogy image analysis framework that exploits a pre-trained VLM and a simple
image-to-text retrieval. The text-based image embeddings, driven by TQx, can
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Table 2. Classification results using visual and text-based image embeddings.

Embedding Colon [19] WSSS4LUAD [20]
Acc (%) Accc (%) F1 Kw Acc (%) Pre F1 Rec

Vision 81.7±1.8 74.6±2.5 0.778±0.014 0.913±0.008 83.9±1.7 0.615±0.016 0.640±0.022 0.889±0.007
Text - WM

Level−0 77.0±2.7 68.7±4.2 0.729±0.019 0.895±0.011 87.3±0.4 0.639±0.003 0.681±0.005 0.919±0.003
Text - WM

Level−1 78.3±2.2 70.0±3.1 0.743±0.017 0.901±0.009 87.4±0.8 0.639±0.006 0.681±0.009 0.911±0.007
Text - WM

Level−2 78.5±1.7 70.2±2.3 0.748±0.012 0.902±0.007 87.0±1.2 0.637±0.009 0.677±0.015 0.913±0.009
Text - WM

Level−3 79.6±2.5 71.8±3.7 0.753±0.021 0.904±0.013 89.3±0.5 0.645±0.005 0.691±0.007 0.866±0.004

Embedding BACH [21] Bladder [22]
Acc (%) Accc (%) F1 Kw Acc (%) Accc (%) F1 Kw

Vision 75.1±1.7 64.8±2.4 0.660±0.020 0.762±0.044 86.1±0.9 85.7±1.0 0.726±0.014 0.749±0.016
Text - WM

Level−0 72.7±0.6 58.1±0.8 0.603±0.016 0.765±0.008 85.2±0.8 88.9±0.3 0.758±0.009 0.716±0.013
Text - WM

Level−1 71.9±1.1 56.0±1.9 0.569±0.013 0.765±0.017 82.0±0.8 83.8±0.3 0.609±0.013 0.679±0.016
Text - WM

Level−2 72.3±1.4 57.0±2.1 0.574±0.011 0773±0.013 81.2±0.8 84.0±0.3 0.604±0.015 0.662±0.013
Text - WM

Level−3 73.1±2.1 58.6±1.3 0.564±0.017 0.801±0.013 78.2±0.4 88.3±0.4 0.683±0.010 0.594±0.005

be used for quantitative analysis and are directly associated with the histopathol-
ogy terms, which are human-readable and -understandable without any post-
processing or interpretation. The future study will further investigate the con-
struction and optimization of the WoI pool and the application of the text-based
image embeddings for other downstream tasks.
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