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Abstract. Existing WSI analysis methods lie on the consensus that
histopathological characteristics of tumors are significant guidance for
cancer diagnostics. Particularly, as the evolution of cancers is a con-
tinuous process, the correlations and differences across various stages,
anatomical locations and patients should be taken into account. How-
ever, recent research mainly focuses on the inner-contextual informa-
tion in a single WSI, ignoring the correlations between slides. To ver-
ify whether introducing the slide inter-correlations can bring improve-
ments to WSI representation learning, we propose a generic WSI analy-
sis pipeline SlideGCD that considers the existing multi-instance learning
(MIL) methods as the backbone and forge the WSI classification task
as a node classification problem. More specifically, SlideGCD declares a
node buffer that stores previous slide embeddings for subsequent exten-
sive slide-based graph construction and conducts graph learning to ex-
plore the inter-correlations implied in the slide-based graph. Moreover,
we frame the MIL classifier and graph learning into two parallel work-
flows and deploy the knowledge distillation to transfer the differentiable
information to the graph neural network. The consistent performance
boosting, brought by SlideGCD, of four previous state-of-the-art MIL
methods is observed on two TCGA benchmark datasets. The code will
be available at https://github.com/HFUT-miaLab/SlideGCD.

Keywords: Computational pathology · Whole slide classification · Graph
learning · Knowledge distillation.

1 Introduction

Histopathology slides contain significant diagnostic information, which leads the
slide screening to an indispensable process for cancer diagnoses [8,25]. With

https://github.com/HFUT-miaLab/SlideGCD
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the development of computational pathology, computer-aided whole slide image
(WSI) analysis is greatly achieved for assisting pathologists in making accurate
and reproducible diagnoses efficiently. Owing to hardware limitations and the
difficulty of obtaining fine-grained annotation [17], the direct process of gigapixel
WSIs is nearly impossible or highly expensive. Therefore, computer-aided WSI
analysis is usually formulated into the multi-instance learning (MIL) task which
considers a WSI as a collection of thousands of patches, analogous to a bag of
thousands of instances in the standard multiple instance description. Current
patch-based WSI analysis methods focus on how to represent the relationships
between patches more comprehensively and efficiently.

The graph-based method is one of the key branches of WSI analysis. Exist-
ing graph-based WSI analysis methods follow the same pattern including three
stages: 1) patch feature extraction, 2) patch-based graph construction (where one
graph describes one slide and nodes represent patches), and 3) graph message
passing and graph classification. Compared with the classical MIL method and
the sequence-based method, the most significant advantage of the graph-based
method lies in the flexibility of the graph construction strategy. Early explo-
rations [4,14,18] directly modeled WSIs as patch-based graphs based on patch
similarity in the different spaces. Further research began to involve detailed con-
siderations such as the category of instances [24] and the hierarchical structure of
instances [2,7]. Recent works began to combine non-simple graphs (e.g. hetero-
geneous graph [3] and hypergraph [5,16,22]) with morphological characteristics,
e.g. lesion state of cell [3] or tissue topology [5], for histopathology WSI anal-
ysis. Although there are some works [6,13,21] have acknowledged the existence
of complementary information between the slides from the same patient, the
unrestricted slide-level inter-correlations exploration still has not drawn much
attention. Since the development of cancers is a continuous process, the corre-
lations and differences across various stages, anatomical locations and patients
might also contribute to the slide representation.

Motivated by that consideration, we propose the generic Slide-based Graph
Collaborative training pipeline with knowledge Distillation (SlideGCD) for WSI
analysis. The intuitive differences between the patch-based graph and the slide-
based graph are shown in Fig. 1. More specifically, we take existing MIL methods
as the backbone of the proposed SlideGCD for obtaining the initial slide embed-
dings. Then, SlideGCD is used to explore the slide correlations via the slide-based
graph. Finally, the slide-level predictions are obtained by node classification. The
main contributions of our work are summarized as follows:

– A generic histopathology WSI analysis pipeline SlideGCD is proposed which
can be adapted to any existing MIL methods. This work exploringly frames
the WSI dataset into a slide-based graph where WSIs are nodes and mines
the slide correlations through graph learning.

– A rehearsal-based graph construction strategy is deployed to describe the
inter-correlations between slides adaptively. Besides, collaborative training
for the specially designed GCN with knowledge distillation is applied which
aims to fully utilize the well-learned knowledge implied in the MIL classifier.
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Fig. 1. Diagrams of different types of graph in WSI analysis: (A) the Patch-based
Graph & (B) the Slide-based Graph.

2 Method

2.1 Overview

The overall workflow of the proposed SlideGCD is shown in Fig. 2. Similar to
the standard MIL framework, SlideGCD first transforms gigapixel WSIs to a
series of patch embeddings using a frozen pre-trained patch encoder f . Then, a
MIL network so-called backbone is deployed to generate the slide embeddings.
After that, the slide embeddings are fed into two branches. One branch is actu-
ally the rest of the backbone with only the classifier to ensure the convergence
and stability of the network during the early training stage. The other graph-
based branch is the specific workflow of SlideGCD which explicitly explores the
inter-correlations on the extensive slide-based graph. During the inference stage,
the slide-level predictions from the graph-based branch are used as the final
predictions.

2.2 Problem Formulation

Assuming there is a dataset with N WSIs denoted by D = {(Si, yi)}Ni=1. Each
WSI Si = {pi,j}Mi

j=1 is annotated with a label yi ∈ {0, ..., C−1}, where pi,j is tiled
patch without patch-level label, Mi is the number of patches and C represents
the number of categories. Then, there is a pre-trained patch encoder f(·) to
transform the patch pk into Dp dimensional patch embeddings for reducing the
computational cost. The goal of WSI classification is to make prediction ŷi =
g(f(pi,1), ..., f(pi,Mi)) as close as possible to the ground-truth yi, where g(·) is an
aggregator that aggregates the instances information and makes final predictions.

2.3 Backbone: MIL Network

The proposed SlideGCD aims to explore the inter-correlations between WSIs,
and a necessary process is to obtain slide-level representations. We leave this
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Fig. 2. Illustration of the proposed SlideGCD.

work to the so-called backbone. In an ideal implementation, the backbone T (·) :
RNi×Dp → RDS can be any MIL methods with any architecture as long as it
can generate fixed dimensional (DS) slide-level embeddings that will be consid-
ered the initial node (vertice) embeddings in the subsequent graph-based branch
BranchG. Notably, we separate the classifier head from the backbone MIL net-
work and denote it as ClsMIL in the following description. The prediction from
ClsMIL is denoted as ŷMIL.

For generating stable slide embeddings at the training of SlideGCD, there
are a few warmup epochs that only optimize the backbone for pre-convergence.
Then, the formal training will start with a smaller learning rate, e.g. 1e-4.

2.4 SlideGCD

In this section, we will introduce and formulate the details of the specific work-
flow of SlideGCD. Firstly, a rehearsal-based graph construction module is ex-
ploited to generate and update a slide-based graph during training adaptively.
Then, a specially designed GCN is deployed to exploit the contextual informa-
tion from the slide-based graph and refine the slide embeddings. Additionally, a
collaborative training strategy with knowledge distillation is employed to solve
the problem of knowledge misaligned between ClsMIL and BranchG.
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Slide-based Graph Construction. Inspired by the idea of Memory Bank [9]
and the rehearsal buffer [11], a Node Buffer with a length of L (L > N) is
designed to store the slide embeddings from the recent training epochs. In each
mini-batch training, the current batch of slide embeddings will be pushed into
the node buffer and several outdated slide embeddings at the end of the node
buffer will be popped out simultaneously (First-in-first-out, like MoCo [9]). With
the node buffer, the involved nodes can be expanded to exceed the capacity of
datasets. Specifically, when L > N , the node buffer will contain at least two
different node embeddings related to the same input slide. The extensive node
collection will potentially alleviate the graph heterophily [15] since similar nodes
are more likely to connect.

Considering a general situation where the clinical information of patients
is not thoroughly available, we conduct the Adaptive Graph Generation (AGG)
strategy to automatically infer the inter-dependencies from the embedding space.
Our AGG module consists of two fully connected layers that transform the slide
embeddings into an intermediate hidden space. Then, the k-NN clustering is
conducted and the slides belonging to the same cluster are connected by a hy-
peredge E , which formulates the slides as a hypergraph G. The adaptive graph
generation process can be formulated as:

G = (X(0), E), E = KNN(AGG(X(0)), k), (1)

where X(0) ∈ RL×DS represents the node embedding sequence in the Node
Buffer that contains the current mini-batch data at the head of the sequence.
Notably, the nodes retrieved from the buffer are considered static data with no
gradients, and gradient propagation only comes from the nodes from the current
mini-batch.

Graph Learning on Slide-based Graph. For the slide-based graph G, a de-
signed GCN composed of two hypergraph convolutional layers [1] and a Centering-
Attention module is applied to explore the context implied in the slide-based
graph, as:

X(i+1) = Leaky_ReLU(HGC(X(i), E)), (2)

H = Concat(X(0), X(1), X(2)), H ∈ RL×3DS (3)

where HGC(·) denotes the hypergraph convolution [1] and X(i) contains the
information accumulated from the node itself to its i-hop neighbors.

To alleviate the graph heterophily, the participation of information from k-
hop neighbors should be reweighed. Thus, we applied a channel-wise attention
module with Centering to rebalance the message and prevent the attention score
from always being positive even when facing defective partial information. The
computations can be formulated as:

H ′ = H · Centering(A) = H · (A−Mean(A)), (4)
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A = Sigmoid(ReLU(HTW0)W1), (5)

where W0,W1 ∈ RL×L are the learnable weights. Finally, an MLP classifier
ClsGraph is used to make final predictions for current mini-batch:

ŷG = Softmax(MLP(H ′)), (6)

Collaborative Training with Knowledge Distillation. The network can
exploit the slide inter-correlations on the extensive slide-based graph with the
above modifications. However, the well-learned intrinsic knowledge of slides im-
plied in the ClsMIL may be neglected. To associate it with the slide inter-
correlations and constrain both branches, we involved the knowledge distillation
[10] to transfer the knowledge learned by ClsMIL to the BranchG.

We treat the ClsMIL and the BranchG as the teacher and student model sep-
arately, letting BranchG draw on the beneficial information learned by ClsMIL.
Specifically, a response-based knowledge distillation loss is adopted as:

LKD = LJS(ŷG, ŷMIL, t̂), (7)

where LJS denotes the JS divergence [19] loss, and t̂ is the temperature coeffi-
cient.

Then, the final loss of SlideGCD can be written as below, LCE(·) repre-
sents the Cross-Entropy loss function, and w = 1 is the weight for knowledge
distillation:

L = LCE(ŷMIL, Y ) + LCE(ŷG, Y ) + w · LKD. (8)

3 Experiments

3.1 Experimental Setting

We conducted experiments on two publicly available cancer cohorts (BRCA &
NSCLC) derived from The Cancer Genome Atlas (TCGA) for evaluating the per-
formance of SlideGCD in the WSI classification task. TCGA-BRCA contains
998 diagnostic digital slides of two breast cancer subtypes. Specifically, 794 WSIs
of invasive ductal carcinoma (IDC) and 204 WSIs of invasive lobular carcinoma
(ILC). TCGA-NSCLC is a collection of two subtype projects for lung cancer,
i.e. Lung Squamous Cell Carcinoma (TCGA-LUSC) and Lung Adenocarcinoma
(TCGA-LUAD), for a total of 995 diagnostic WSIs, including 496 WSIs of LUSC
and 499 WSIs of LUAD. The average accuracy (ACC), macro-average F1 score
(F1), and macro-average area under the receiver operating characteristic curve
(AUC) are calculated for evaluating the classification performance.

It is worth mentioning that we directly adopted the default setting of hyper-
parameters to the baseline from its public repository and remained fixed when
applying SlideGCD for the fairness of comparison. More experimental setting
details are in Supplementary. During inference, all parameters and the Node
Buffer are frozen. When a WSI is inputted, 1) its initial embedding will be
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made with T (·), 2) the AGG module will insert it into the slide-based graph
by connecting it with its k-nearest buffer nodes, 3) the trained GCN will make
message passing to refine its embeddings for final classification. We implemented
all the models in PyTorch 1.8 and PyG libraries and ran the experiments on a
computer with an NVIDIA RTX 3090 GPU.

3.2 Effectiveness for WSI Classification

Table 1 shows the results for the four previous state-of-the-art MIL methods,
namely ABMIL [12], PatchGCN [4], TransMIL [20] and DTFDMIL [23], with or
without the collaboration of SlideGCD. Each of them represents a typical branch
in WSI analysis. ABMIL [12] speaks for the classical lightweight attention-based
MIL methods without considering patch relationships. PatchGCN [4] is a typical
graph-based MIL method that involves the patch correlation via the patch-based
graph. TransMIL [20] is a powerful transformer-based MIL method that exploits
the patch correlations by utilizing the self-attention mechanism. DTFDMIL [23]
is a novel pseudo-bags-based MIL method that derives the instance probabilities
as the attention score of each instance.

Overall, SlideGCN is capable of bringing stable improvement to all four types
of baseline. Specifically, on the TCGA-BRCA dataset, SlideGCD-DTFDMIL
promotes F1-score from 0.8317 to 0.8519 and improves AUC from 0.9008 to
0.9123. On TCGA-NSCLC dataset, SlideGCD improves DTFDMIL to achieve
ACC of 0.8983 (↑3.41%), AUC of 0.9636 (↑0.77%) and F1-score of 0.8982 (↑3.42%).
Considering the characteristics of datasets and baselines, SlideGCD prefers pseudo-
bag-based DTFDMIL most and the performance boosting of lightweight mod-

Table 1. The performance of SlideGCD on different baselines. All reported results
are the means and standard deviations with five-fold cross-validation (CV). †: The
discrepancies in reported results from the original paper are mainly caused by the
difference in patch encoder and CV settings where the original TransMIL conducts a
four-fold CV.

Method\Metrics TCGA-BRCA Dataset TCGA-NSCLC Dataset
ACC(%) AUC(%) F1(%) ACC(%) AUC(%) F1(%)

ABMIL [12] (Baseline) 88.97±0.85 89.87±0.89 81.61±2.27 86.96±1.16 95.14±0.51 86.89±1.20
SlideGCD-ABMIL 89.04±1.11 90.22±1.31 85.53±1.53 89.57±0.77 95.68±0.56 89.56±0.78

Improvement ∆ +0.07 +0.45 +3.92 +2.61 +0.54 +2.67

PatchGCN [4] (Baseline) 84.80±1.77 87.18±1.55 75.11±4.57 86.62±2.38 94.81±1.82 86.59±2.43
SlideGCD-PatchGCN 85.13±0.96 87.36±0.96 76.08±1.59 88.29±1.34 95.21±1.08 88.26±1.35

Improvement ∆ +0.33 +0.18 +0.97 +1.67 +0.40 +1.67

TransMIL† [20] (Baseline) 88.17±1.00 90.99±0.91 82.09±1.75 85.82±1.67 94.82±1.17 85.77±1.67
SlideGCD-TransMIL 89.37±2.23 91.14±1.48 82.68±3.22 86.82±1.41 95.59±0.27 86.78±1.45

Improvement ∆ +1.20 +0.15 +0.59 +1.00 +0.77 +1.01

DTFDMIL [23] (Baseline) 89.30±0.44 90.08±0.86 83.17±1.43 86.42±1.07 95.59±0.66 86.40±1.06
SlideGCD-DTFDMIL 90.43±1.65 91.23±1.26 85.19±2.59 89.83±1.80 96.36±0.51 89.82±1.82

Improvement ∆ +1.13 +1.15 +2.02 +3.41 +0.77 +3.42
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(a) (b) (c)

Fig. 3. Hyperparameter studies of (a) Size of hyperedge k, (b) Size of node buffer L
and (c) Distillation temperature t̂.

els (i.e. ABMIL&PatchGCN) on imbalanced dataset TCGA-BRCA is relatively
small. Compared with previous methods that only inspect the slide innateness,
SlideGCD additionally looks at the potential connection between the WSIs with
similar patterns in tumors. Such consideration exploits the WSI dataset more
comprehensively and therefore achieves better performance.

As for the extra computations, they mainly come from several additional
linear layers and two graph convolutional layers. Concretely, our method has
GFLOPs of 404.37 with a mini-batch consisting of 64 WSIs with 5000 patches,
which is only 1.01% higher than the 398.93 GFLOPs of its baseline TransMIL.
This increase is minimal.

3.3 Hyperparameter Studies

Ablation experiments on hyper-parameters are conducted on the TCGA-BRCA
dataset with the backbone of DTFDMIL. As presented in Fig. 3, the reported
results are the means of ACC\AUC on the validation set with five-fold CV.

Size of hyperedge k. k controls the topology of the slide-based graph, and
as k increases, there is more overlap between hyperedges. From Fig. 3a, the
topology of the slide-based graph could affect the performance of SlideGCD. It
does not improve monotonically with the increased size of hyperedge k and seems
saturated at k = 12. Thus, we chose a size of 12 as the default configuration.

Size of node buffer L. L affects the timeliness of node features in the
constructed slide-based graph. When it becomes too large, it can be foreseen
that there will be a decrease in performance as the node buffer contains many
outdated slide features. As it becomes too small, the improvement shall descend.
According to Fig. 3b, we empirically set L = 3072.

Distillation temperature t̂. In the higher temperature situation (i.e. t̂ >
1), distillation focuses on transferring knowledge from the teacher model. At
lower temperatures (i.e. t̂ < 1), distillation tends to alleviate the impact of noise
in negative samples [10]. Our motivation is to transfer the well-learned knowledge
in ClsMIL to BranchG, thus a relatively large temperature coefficient should
have a better effect. Following the results in Fig. 3c, we set t̂ = 1.5.
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4 Conclusion

In this paper, we proposed a generic pipeline SlideGCD for histopathology WSI
classification and verified the possible improvements of introducing slide cor-
relations via the slide-based graph. SlideGCD exploringly takes the potential
connections between slides with similar pathological patterns into account and
eventually achieves better performance in WSI classification in a more compre-
hensive way of utilizing the WSI dataset. Comprehensive experiments have been
conducted on various MIL benchmarks and the results show that SlideGCD can
boost existing methods consistently.
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