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Abstract. Segment anything models (SAMs) are gaining attention for
their zero-shot generalization capability in segmenting objects of unseen
classes and in unseen domains when properly prompted. Interactivity is
a key strength of SAMs, allowing users to iteratively provide prompts
that specify objects of interest to refine outputs. However, to realize
the interactive use of SAMs for 3D medical imaging tasks, rapid infer-
ence times are necessary. High memory requirements and long processing
delays remain constraints that hinder the adoption of SAMs for this pur-
pose. Specifically, while 2D SAMs applied to 3D volumes contend with
repetitive computation to process all slices independently, 3D SAMs suf-
fer from an exponential increase in model parameters and FLOPS. To
address these challenges, we present FastSAM3D which accelerates SAM
inference to 8 milliseconds per 128×128×128 3D volumetric image on an
NVIDIA A100 GPU. This speedup is accomplished through 1) a novel
layer-wise progressive distillation scheme that enables knowledge transfer
from a complex 12-layer ViT-B to a lightweight 6-layer ViT-Tiny variant
encoder without training from scratch; and 2) a novel 3D sparse flash
attention to replace vanilla attention operators, substantially reducing
memory needs and improving parallelization. Experiments on three di-
verse datasets reveal that FastSAM3D achieves a remarkable speedup of
527.38× compared to 2D SAMs and 8.75× compared to 3D SAMs on the
same volumes without significant performance decline. Thus, FastSAM3D
opens the door for low-cost truly interactive SAM-based 3D medical
imaging segmentation with commonly used GPU hardware. Code is avail-
able at https://github.com/arcadelab/FastSAM3D.

Keywords: Foundation Model · Segment Anything Model (SAM) · In-
teractive Segmentation · Model Acceleration.

1 Introduction

In medical image analysis, object segmentation is a key aspect of diagnosis- and
prognosis-related tasks including lesion localization, tissue characterization, and
volume estimation, among others [8,21,29,14]. Traditionally, deep learning mod-
els like U-Net [22] and variants [15,11] have excelled in specific tasks and datasets

https://github.com/arcadelab/FastSAM3D
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Table 1. Comparison of SAM approaches regarding applicability for medical imaging,
suitability for 3D volumetric data, and computational efficiency of the core compo-
nents: image encoder, prompt encoder, and mask decoder. The vanilla SAM [16] lacks
in all criteria. MobileSAM [32] improves encoder efficiency, while TinySAM [24] accel-
erates all components, but neither addresses 3D medical imaging data. MedSAM [18]
and SAM-Med2D [4] are tailored for medical 2D data yet do not improve efficiency.
SAM-Med3D [27] handles 3D medical data but inference times for these limit or alto-
gether preclude real-time interactive use with standard GPU hardware. Our proposed
FastSAM3D meets all criteria, providing a comprehensive solution for efficient interactive
medical image segmentation in volumetric 3D data.

Method Medical Volumetric
3D Data

Efficient
Image Encoder

Efficient
Prompt Encoder

Efficient
Mask Decoder

SAM [16] ✗ ✗ ✗ ✗ ✗

MobileSAM [32] ✗ ✗ ✓ ✗ ✗

TinySAM [24] ✗ ✗ ✓ ✓ ✓

MedSAM [18] ✓ ✗ ✗ ✗ ✗

SAM-Med2D [4] ✓ ✗ ✗ ✗ ✗

SAM-Med3D [27] ✓ ✓ ✗ ✗ ✗

FastSAM3D (ours) ✓ ✓ ✓ ✓ ✓

with clear and confined scope, but often demonstrate limited generalization.
While some work considered interactive segmentation approaches as a means
to overcome the limitations of narrowly scoped, task-specific models [1,26], the
introduction of Segment Anything Model (SAM) [16] initiated a paradigm shift
to prompt-based interactive segmentation that now provides competitive perfor-
mance due to the inherent generalizability of foundation models. SAM is comprised
of a pre-trained Vision Transformer (ViT) encoder [9], a prompt encoder, and
a lightweight decoder that facilitates multi-mask prediction via IoU-based rank-
ing. Trained on over 1 billion masks and 11 million images, SAM adapts to new
tasks without training [16]. Despite successes on natural images [10,17], direct
application of SAM to medical segmentation reveals performance gaps compared
to task-specific U-Nets [33].

To address this, MedSAM [18] and SAM-Med2D [4] were tailored for 2D med-
ical data via model fine-tuning. When applied to 3D volumetric data, these
approaches under-perform due to slice-wise processing [19,3]. They also suffer
from an increased computational cost that is proportional to the number of
slices in the volume, as well as the higher input resolution. Addressing this gap,
SAM-Med3D [27] introduced 3D counterparts of SAM’s components and end-to-
end 3D training.

Existing medical SAMs also face limitations of long inference times and high
computational costs stemming from the Transformer architecture [9]. Prior ef-
forts accelerated 2D SAMs for natural images via approaches such as FastSAM,
which employs a YOLOv8 as the image encoder [2,35]. However, this CNN-
based approach exhibits limitations with small object segmentation and devi-
ates from SAM’s interactive prompting design [32,35]. Attempts, more aligned
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with the SAM value proposition, such as MobileSAM, retain the Transformer en-
coder while employing distillation to transition from a larger SAM encoder to
a more lightweight ViT encoder [32]. Following a similar approach, other works
have explored several ViT variants as alternative encoders to balance efficiency
and effectiveness [34,25]. TinySAM further reduces computational load via post-
distillation quantization [24]. However, these advancements remain confined to
2D natural images without delving into efficient volumetric medical segmenta-
tion. Table 1 offers a systematic comparison of existing SAMs, highlighting the
capabilities of our proposed method in addressing the demands of 3D medical
image segmentation with enhanced efficiency across all components.

The contributions of this work are two-fold, summarized as follows: Firstly,
we introduce FastSAM3D, a markedly more efficient 3D SAM for interactive vol-
umetric medical image segmentation. Rather than costly training from scratch
which also leads to the difficulty in convergence [12], we propose a layer-wise
progressive distillation approach to transfer representational knowledge from a
complex 12-layer ViT-B architecture to an efficient customized 6-layer ViT-Tiny
encoder. This retains segmentation performance while significantly enhancing
computational efficiency. Secondly, we propose a novel 3D sparse flash attention
that replaces the standard self-attention operator in all SAM components, dra-
matically reducing memory footprint, and enabling parallel processing. Together,
these innovations address the efficiency limitations that hinder the implementa-
tion of medical SAMs for real-time prompt-based interactive 3D segmentation.

2 Methods

2.1 Architecture Overview of FastSAM3D

We introduce FastSAM3D, a computationally efficient adaptation of SAM-Med3D
[27], also designed specifically for efficient interactive 3D medical image seg-
mentation. Adhering to the standard SAM paradigm [16], FastSAM3D is com-
prised of three key modules (Fig. 1): (i) a ViT-based image encoder [9] to ob-
tain volumetric embeddings; (ii) a prompt encoder; and (iii) a mask decoder to
project representations back to the segmentation mask. To achieve faster infer-
ence, FastSAM3D distills knowledge from a high-powered 12-layer ViT-B encoder
to a streamlined 6-layer ViT-Tiny variant, substantially reducing computational
complexity during encoding. Specifically, aside from having fewer layers, each
Transformer block contains only 6 attention heads, in contrast to 12 heads per
block in SAM-Med3D’s ViT architecture. Moreover, we retain the feed-forward
network (FFN) within the first two transformer blocks and omit attention oper-
ations [9], incurring minimal impact on performance while amplifying speed [31].
This design choice further contributes to shorter training by requiring fewer lay-
ers to align with the teacher during our progressive distillation process.

2.2 Layer-wise Progressive Distillation for the Image Encoder

As the image encoder accounts for a major portion of SAM’s computational load,
our first focus is transferring knowledge from the heavy ViT-B architecture to
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Fig. 1. The overall framework of FastSAM3D, comprising a 6-layer ViT-Tiny variant
image encoder distilled from a capable 12-layer ViT-B teacher encoder, a lightweight
prompt encoder, and a mask decoder. All the self attention operators are replaced by
the proposed 3D sparse attention for better efficiency.

a lightweight ViT-Tiny model for efficiency gains. To avoid costly training from
scratch, we follow the teacher-student distillation paradigm [12] by designating
the 12-layer ViT-B as the teacher model, fteacher, and the 6-layer ViT-Tiny vari-
ant as the student model, fstudent. Unlike traditional logit-level distillation [12]
with which all our experiments failed to converge, we propose a novel layer-wise
progressive distillation method. This approach allows for a more granular and
effective knowledge transfer between the student and teachers by matching the
intermediate representation progressively across layers, thus making it easier for
optimization. Formally, let f

(i)
teacher(x) and f

(j)
student(x) denote layer i = 1, · · · , 12

and j = 1, · · · , 6 outputs for an input x ∈ R128×128×128 from the 12-layer teacher
and 6-layer student respectively. The objective of our layer-wise progressive dis-
tillation becomes:

L = Ex

(1
k

k∑
i=1

∥f (2i)
teacher(x)− f

(i)
student(x)∥

)
, (1)

where ∥ · ∥ denotes the L2-norm, k varies from 1 to 6 based on current and total
training iterations:

k = ⌈#(Current Iteration)× 6

#(Total Iterations)
⌉, (2)

where ⌈·⌉ is the upper rounding operator. This enables progressive alignment
of student and teacher intermediate representations. After finishing layer-wise
distillation, we perform logit-level distillation to fit predictions further. In Eq. 1,
E(·) represents the expectation over all possible images.
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2.3 3D Sparse Flash Attention

As we observe that the attention operators take up the largest proportion of
computation, we introduce a 3D sparse flash attention operator to further en-
hance efficiency. Specifically, our 3D sparse flash attention scheme supplants the
traditional self-attention operation in both the encoder and decoder, integrating
extended receptive fields inspired by dilated convolutions [30] with the compu-
tational agility achieved by flash attention [6,5].

3D Sparse Attention The 3D sparse attention mechanism aims to expand the
receptive field across volumetric data while effectively managing the computa-
tional load. Traditional attention mechanisms tend to escalate in computational
demand proportional to the increase in data volume, particularly challenging for
3D volumetric data due to its large number of tokens [9,23]. To address this,
our approach segments the input token sequence into equally sized partitions
of w and applies a strategic sparsification across these segments [7]. This in-
volves selectively sampling data points at the determined intervals with length
r, thereby diminishing the overall number of tokens subjected to the attention
process. This allows for more efficient computation by focusing attention on
fewer yet representative tokens. Formally, the 3D sparse attention mechanism
can be formulated as computing the attention over each segment as follows:

Ŝi = [Si, Si+r, . . . , Si+(w−1)r], (3)

where Ŝi represents the selectively sampled segment, ensuring that the model’s
attention is distributed across a sparse set of points, thereby reducing computa-
tional demands without sacrificing the depth of contextual analysis.

Enhancing Efficiency through Parallel Processing with Flash Atten-
tion We enhance efficiency by processing each segment in 3D sparse attention
independently, enabling parallel operations that significantly boost computa-
tional throughput. By incorporating flash attention [6,5], our model optimizes
the functionality of parallel attention heads, substantially reducing the time and
memory overhead associated with simultaneous processing activities.

Overall Processing Procedure The 3D sparse flash attention operator, inte-
gral to both the image encoder and mask decoder, operates through a sequence
of orchestrated steps as follows. The process starts with the sparsification step,
wherein the input sequence undergoes partitioning into sparse segments. Sub-
sequently, the attention operation ensues, wherein the previous segments are
subjected to the flash attention for parallelization [6,5]. The focus of this stage
is on harnessing the reduced sequential computation and memory optimization
capabilities of flash attention. The final phase is recomposition [7], where the dis-
crete outputs procured from the flash attention are reassembled to form the final
encoded representation. This stage ensures that the final encoded representation
has an identical dimension to its input.
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Table 2. Performance comparison of 2D and 3D SAM approaches in terms of Dice score.
We measure the performance at 1, 3, 5, and 10 point prompts (pt). SAM-Med3D and our
FastSAM3D are evaluated in a 3D context, whereas SAM, MobileSAM, TinySAM, MedSAM
and SAM-Med2D are applied independently to all 2D slices of the entire 3D volume.
Notably, FastSAM3D demonstrates competitive performance with SAM-Med3D and shows
enhanced Dice scores relative to all its 2D counterparts, highlighting the effectiveness
of our approach. The best performance is shown in red and boldface, while the second
best is in blue.

Dim Method
AMOS [13] TotalSegmentator [28] BraTS [20]

1pt 3pt 5pt 10pt 1pt 3pt 5pt 10pt 1pt 3pt 5pt 10pt

2D

SAM [16] 0.049 0.093 0.114 0.145 0.202 0.279 0.311 0.348 0.108 0.192 0.217 0.237

MobileSAM [32] 0.041 0.056 0.063 0.070 0.149 0.170 0.182 0.212 0.079 0.132 0.156 0.186

TinySAM [24] 0.049 0.077 0.089 0.101 0.171 0.225 0.243 0.262 0.103 0.165 0.187 0.211

MedSAM [18] 0.004 0.051 0.060 0.074 0.006 0.069 0.090 0.111 0.008 0.059 0.064 0.071

SAM-Med2D [4] 0.097 0.127 0.129 0.132 0.008 0.081 0.100 0.128 0.013 0.076 0.082 0.084

3D
SAM-Med3D [27] 0.289 0.386 0.418 0.448 0.252 0.400 0.463 0.522 0.328 0.395 0.418 0.446

FastSAM3D 0.273 0.368 0.402 0.437 0.250 0.378 0.445 0.519 0.333 0.401 0.421 0.445

3 Experiments

Implementation Details Our method as well as all baseline methods are
implemented in Python 3.9 and PyTorch 2.1.0. The computational environment
for our experiments is standardized across all methods, utilizing an NVIDIA
A100 GPU with 40Gb of memory. For the layer-wise progressive distillation, we
set the total training iteration number in Eq. (2) to 36. Training is facilitated by
the Adam optimizer, with a learning rate of 5× 10−3 and a batch size of 16. For
evaluation metrics, we use the Dice score to measure segmentation performance.
We also report inference time, floating point operations (FLOPs), and memory
cost to quantify the computational complexity.

Datasets Our evaluation incorporates three diverse datasets that span two
modalities, namely computed tomography (CT) and magnetic resonance imaging
(MRI), where we follow the dataset splits of previous work [27]. (1) The AMOS
dataset [13] is a substantial and varied clinical collection designed for abdominal
organ segmentation with 500 CT and 100 MRI scans. (2) The TotalSegmentator
dataset [28] consists of 1228 CT studies each with 117 anatomical structures
acquired from different pathologies, scanners, series, and institutions. (3) The
BraTS 2021 dataset [20] assembles a total number of 1251 multi-institutional
MRI scans.

Performance Comparison Table 2 compares segmentation performance for
FastSAM3D with various 2D and 3D SAM approaches. Fig. 2 provides an il-
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Table 3. Comparison of the computational efficiency with respect to the encoder
and decoder. We report the time (ms), FLOPs (G), and memory (Gb), alongside ac-
celeration factors relative to 2D SAM [16] and 3D SAM-Med3D [27]. For 2D SAMs, we
compute the time to process all the slices within volumetric data. The best results are
highlighted in bold if statistically different from the second best result (p < 0.01).

Dim Method Resolution
Encoder Decoder Acceleration

Time
(ms)↓

FLOPs
(G)↓

Memory
(Gb)↓

Time
(ms)↓

FLOPs
(G)↓

Memory
(Gb)↓ To 2D ↑ To 3D ↑

2D

SAM [16] 1024× 1024 3980 369.0 7.87 239 3.0 5.57 1.00× /
MobileSAM [32] 1024× 1024 584 36.7 5.48 233 3.0 5.27 5.16× /
TinySAM [24] 1024× 1024 609 36.7 5.48 246 3.0 5.27 4.93× /
MedSAM [18] 1024× 1024 3983 369.0 7.87 241 2.9 5.57 1.00× /

SAM-Med2D [4] 256× 256 1063 32.0 6.32 216 0.21 5.55 3.30× /

3D SAM-Med3D [27] 128× 128× 128 70 89.5 6.58 20 2.8 5.53 60.27× 1.00×
FastSAM3D 128× 128× 128 3 21.9 0.78 5 2.8 0.71 527.38× 8.75×

lustrative visualization for samples segmented by different methods. FastSAM3D
not only demonstrates competitive segmentation performance in comparison to
its teacher model, SAM-Med3D, but also surpasses all 2D efficient SAM mod-
els, especially when the number of point prompts is increased. For example,
FastSAM3D achieves a Dice score of 0.437 on the AMOS dataset with 10 point
prompts, which is a significant improvement over the 0.306 score from the best-
performing 2D model (p < 0.01). This trend is consistent across the TotalSeg-
mentator and BraTS datasets, underscoring the robustness of FastSAM3D across
different datasets, modalities, and organs. Additionally, 2D SAM methods re-
quire intensive per-slice prompting as opposed to FastSAM3D which only involves
volume-level interactions.

Computational Efficiency Comparison Regarding the computational effi-
ciency, Table 3 reveals that FastSAM3D reduces the inference time for the en-
coder to 3 milliseconds and decoder to 5 milliseconds for 3D volumetric images,
a substantial improvement from the 3980 milliseconds required by the vanilla
SAM employed in a slice-by-slice manner. Moreover, FastMed3D requires fewer

Table 4. Ablation study for the contribution of 3D sparse attention (‘Sparse Attn.’)
and flash attention (‘Flash Attn.’) to the performance and efficiency of FastSAM3D. Best
scores are highlighted in bold, if statistically different from the second best result (p <
0.01). 3D sparse attention and flash attention contribute to substantial improvements
in time and memory requirements without statistically significant performance decline.

Sparse
Attn.

Flash
Attn.

AMOS [13] TotalSegmentator [28] BraTS [20] Encoder
1pt 3pt 5pt 10pt 1pt 3pt 5pt 10pt 1pt 3pt 5pt 10pt Time FLOPs Memory

✗ ✗ 0.282 0.375 0.403 0.436 0.243 0.371 0.442 0.516 0.335 0.404 0.422 0.444 10 23.1 1.16
✗ ✓ 0.276 0.366 0.398 0.432 0.247 0.374 0.438 0.516 0.331 0.402 0.421 0.445 6 21.9 1.15
✓ ✗ 0.277 0.370 0.402 0.433 0.255 0.381 0.450 0.520 0.328 0.403 0.422 0.445 9 23.1 0.79
✓ ✓ 0.273 0.368 0.402 0.437 0.250 0.378 0.445 0.519 0.333 0.401 0.421 0.445 3 21.9 0.78
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Fig. 2. Representative segmentation results from all methods across three datasets.
FastSAM3D demonstrates accurate contour delineation comparable to SAM-Med3D.

FLOPs and less memory than all counterparts, achieving a 527.38× acceleration
compared to the vanilla SAM and 8.75× acceleration compared to SAM-Med3D.

Ablation Study Table 4 illustrates the effectiveness of both sparse and flash
attention in optimizing computational efficiency. Specifically, when neither 3D
sparse nor flash attention mechanisms were applied, the model achieved a Dice
score of 0.436 on the AMOS dataset with 10 prompts. The introduction of 3D
sparse attention marginally reduces the Dice score to 0.433 from 0.436 on AMOS
but substantially reduces memory consumption from 1.06 Gb to 0.79 Gb. Flash
attention alone improves inference time from 10 ms to 6 ms, underscoring its
impact on computational efficiency. Moreover, the concurrent implementation of
both sparse and flash attention yields the most substantial improvements. For
instance, the Dice score on the AMOS dataset with 10 prompts increases to
0.437, and the encoder time is reduced to 3 ms, Memory requirements are also
minimized to 0.78 Gb, suggesting an optimized model footprint.

4 Conclusion

We present FastSAM3D, an innovative adaptation of SAM for efficient segmen-
tation of volumetric medical imaging data. This model addresses the critical
challenges of high inference time and the substantial computational cost asso-
ciated with previous 3D SAM methods. Through a novel layer-wise progressive
distillation and 3D sparse flash attention integration, we significantly reduce
computational demands while maintaining high segmentation performance. Our
experiments across different modalities and organs demonstrate that FastSAM3D
not only accelerates inference by factors of 527.38× compared to 2D SAMs and
8.75× to 3D SAMs but also retains the flexibility of SAM’s interactivity, mak-
ing it a promising and powerful tool for clinical deployment. FastSAM3D opens
up the possibility of real-time human-machine interaction by facilitating rapid
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prompting volumetric segmentation, thereby potentially maximizing user agency
and trust while minimizing effort, workload, and wait time-related frustration.
With the speed and efficiency of FastSAM3D, another possible direction includes
the development of mixed reality (MR) applications for surgical planning and
guidance.
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