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Abstract. Slide-level classification for whole-slide images (WSIs) has
been widely recognized as a crucial problem in digital and computa-
tional pathology. Current approaches commonly consider WSIs as a bag
of cropped patches and process them via multiple instance learning due
to the large number of patches, which cannot fully explore the relation-
ship among patches; in other words, the global information cannot be
fully incorporated into decision making. Herein, we propose an efficient
and effective slide-level classification model, named as FALFormer, that
can process a WSI as a whole so as to fully exploit the relationship among
the entire patches and to improve the classification performance. FAL-
Former is built based upon Transformers and self-attention mechanism.
To lessen the computational burden of the original self-attention mech-
anism and to process the entire patches together in a WSI, FALFormer
employs Nyström self-attention which approximates the computation by
using a smaller number of tokens or landmarks. For effective learning,
FALFormer introduces feature-aware landmarks to enhance the represen-
tation power of the landmarks and the quality of the approximation. We
systematically evaluate the performance of FALFormer using two public
datasets, including CAMELYON16 and TCGA-BRCA. The experimen-
tal results demonstrate that FALFormer achieves superior performance
on both datasets, outperforming the state-of-the-art methods for the
slide-level classification. This suggests that FALFormer can facilitate an
accurate and precise analysis of WSIs, potentially leading to improved
diagnosis and prognosis on WSIs.
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1 Introduction

In recent years, slide-level whole-slide image (WSI) classification has drawn con-
siderable attention due to its crucial role in clinics for disease diagnosis and
prognosis [10]. Given that WSIs are gigabytes in size, obtaining pixel-level anno-
tations and conducting patch-level classification poses significant challenges to
the field of computational pathology. The common strategy to handle and pro-
cess WSIs is to adopt the multiple instance learning (MIL) paradigm, in which
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WSIs are divided into a set of disjoint patches, representing WSIs as a bag of
patches or instances, and the information from the patches are extracted, se-
lected, and/or aggregated to produce the slide-level prediction. There are two
main MIL-based approaches including instance-based [7,1] and bag embedding-
based models [8,9,11,12,16]. Instance-based models conduct path-level predic-
tions and then aggregate the results to produce the final prediction for a WSI,
while bag embedding-based models map the patches in a bag into one embedding
vector and make a prediction based on it. It has recently shown that instance-
based models are less efficient than bag embedding-based models [13,12]. Bag
embedding-based models are mostly built based upon an attention mechanism
and Transformer architecture. For example, AB-MIL [8] learns to assign a weight
for each patch using the attention mechanism, and then performs a weighted av-
erage to aggregate all the patch embeddings. Similarly, CLAM [11] conducts an
auxiliary task that clusters the top most-attended patch embeddings as posi-
tive patches and the top least-attended patch embeddings as negative patches
to constrain and refine the feature space. DTFD-MIL [16] is a two-stage MIL-
based model, involving sub-MIL and global MIL models, that sought to handle
overfitting problems due to the limited number of WSIs. The original patch bag
undergoes random splitting to create multiple sub-bags, of which each is pro-
cessed and aggregated using a sub-MIL model. The representative embeddings
from the sub-bags are fed into a global MIL model. However, long-range de-
pendencies among patches have not been exploited well, as bag embedding is
produced by computing a weighted sum of all patches. To address this, some re-
cent studies attempt to make use of self-attention. For instance, TransMIL [12]
adopts an architecture of Transformer with positional encoding to retain the
spatial information of the cropped patches by reshaping them into 2-D image
space and applying multiple learnable convolutions, and utilizes vanilla Nyström
Attention to approximate self-attention among patch features. HIGT [5] intro-
duces a strategy of using clustering and pooling to reduce the number of patches
and applies a variant of self-attention. MSPT [3] performs clustering to reduce
the number of patches uses them as queries for self-attention.

Though successful, these previous MIL-based models, by and large, do not
fully explore and utilize all the available patches due to the enormous number
of the patches and the computational cost, which likely limits the capability of
the model and the subsequent decision making. Hence, advanced methods that
can efficiently and effectively process a WSI as a whole or the entire patches
together in efficient manner are needed to improve the accuracy and efficiency
of the slide-level image classification.

Herein, we propose a Feature-Aware Landmarks TransFormer (FALFormer)
for efficient and effective slide-level image classification. FALFormer is built
based upon Transformers and self-attention mechanisms. To reduce the com-
putational burden and to process the entire patches in a WSI, FALFormer
adopts Nyström self-attention [15] which approximates the computation by us-
ing a smaller number of tokens or landmarks. For effective learning, FALFormer
introduces a Feature-Aware Landmarks Nyström Self-Attention (FALSA), which
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enhances the representation power of the landmarks so as to better approximates
the self-attention computation, leading to improved classification performance.
Two public datasets, including CAMELYON16 and TCGA-BRCA, are employed
to evaluate FALFormer. The experimental results demonstrate that FALFormer
is able to conduct the slide-level image classification in an accurate and ro-
bust manner and outperforms the state-of-the-art models. Our implementation
is available at 1.

2 Methodology

In this section, we present FALFormer for the WSI classification/sub-typing
problem. Let X be a Giga-sized WSI and Y be the slide-level class label of
X. The objective of our study is to develop a Transformer-based model T (·),
i.e., FALFormer, which fully exploits entire patches tiled from the WSI with
spatially-aware landmarks, and predict the slide-level label: Y = T (X). The
overview of FALFormer is illustrated in Fig. 1.

Fig. 1. Overview of FALFormer. A WSI is first segmented and tiled into patches based
on foreground regions. Then, patch embeddings are extracted and divided into a num-
ber of segments by using K-means clustering. FALFormer computes representative
landmarks using the segments and use them to process the entire patch embeddings in
an efficient and effective mannder for the slide-level classification.

2.1 Feature-aware Landmarks Transformer

Given X, we first remove background to retrieve tissue regions. Subsequently,
the tissue regions are tiled into a bag of N patches P = {pi}Ni=1 where pi denotes
the ith patch and N depends on each WSI. From each patch pi, an embedding

1 https://github.com/caodoanh2001/FALFormer

https://github.com/caodoanh2001/FALFormer
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vector hi ∈ R1×df , a.k.a. a patch token, is produced using a feature extractor
F(·) where df is the dimension of the embedding vector and can vary depending
on the choice of F(·). Finally, a set of patch tokens H = {hi}Ni=1 is obtained.

FALFormer receives H and conducts a linear projection FC followed by a
GELU activation to map the dimension of the patch tokens to the dimension
of the model space dmodel. The resultant patch tokens are concatenated with

a learnable [CLS] token, denoted as h
(0)

[CLS]
∈ R1×dmodel , producing H(0) =

Concatenate
(
h
(0)

[CLS]
, GELU(FC(H))

)
∈ R(N+1)×dmodel . Then, H(0) undergoes a

stack of L Transformer layers given by: H(i) = Transformer(i)
(
H(i−1)

)
, 1 ≤ i ≤

L where Transformer(i)(·) consists of a normalization layer LayerNorm and a
FALSA. LayerNorm learns affine transform parameters for the patch tokens: H′ =
LayerNorm

(
H(i−1)

)
. FALSA is used to approximate the self-attention computa-

tion for H′ with a skip connection: H(i) = H(i−1)+FALSA(H′). Finally, only the

[CLS] token is utilized for the prediction:Y = Classifier
(
LayerNorm

(
h
(L)

[CLS]

))
.

2.2 Revisiting Nyström self-attention

Nyström self-attention [15] is an approach to approximate the self-attention
computation. Given a sequence of patch tokens H and three learnable projection
matrices WQ, WK , and WV , the standard self-attention computes the query
Q ∈ RN×dq , key K ∈ RN×dk , and value V ∈ RN×dv as follows: Q = HWQ,
K = HWK , V = HWV where N is the number of tokens (N is large) and dq,
dk, and dv is the dimension of the query, key, and value vector, respectively. This

requires to compute attention weights att = softmax
(

QKT

√
dk

)
, which may cause

the out of memory problem due to the large N . To lessen the computational
burden, Nyström self-attention reduces N to N ′ (N ′ ≪ N) for Q and K by
grouping N tokens into N ′ segments where each segment contains Nk = N/N ′

tokens, producing sets of segments {Q(i)}N ′

i=1 and {K(i)}N ′

i=1. The tokens are

averaged within each segment, forming landmarks Q̃ =
{

1
Nk

ΣQ(i)
}N ′

i=1
and K̃ ={

1
Nk

ΣK(i)
}N ′

i=1
. Then, Nyström self-attention can be formulated as:

F̃ = softmax
(

QK̃T√
dq

)
, Ã = softmax

(
Q̃K̃T√

dq

)+

, B̃ = softmax
(

Q̃KT√
dq

)
,

F̃ ∈ RN×N ′
, Ã ∈ RN ′×N ′

, B̃ ∈ RN ′×N ,

H = (F̃ × Ã)× (B̃ ×V),

(1)

where (·)+ denotes the Moore-Penrose pseudoinverse function. The computa-
tional complexity of the standard self-attention computation is O(N2) because
the scale-dot matrix multiplication should be done for all N tokens, which is in-
appropriate in the case of a large N . Nyström self-attention (Eq. 1) has the com-
putational complexity of O(N), which is much smaller than O(N2) if N ′ ≪ N .
Though successful, there still remains a question of how to choose the land-
marks to achieve better performance in the context of WSI? Nyström
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self-attention groups the N tokens into N ′ segments in order from top to bottom.
We hypothesize that the better landmarks we choose, the better approximation
we obtain, leading to improved classification performance.

2.3 Feature-aware Landmarks Nyström Self-Attention (FALSA)

FALSA chooses the best representative landmarks as follows. First, it defines the
maximum number of segments, denoted as Ns (Ns ≪ N). Second, it utilizes the
K-means clustering algorithm to find Ns centroids and to divide the patch tokens

H into Ns segments: S = K-means(H, Ns) where S =
{
si
}N

i=1
, si ∈ {1, 2, ..., Ns},

denotes the set of segment IDs for H. Third, tokens in the query Q and the
key K are segmented based on their segment IDs S, except for the [CLS]

tokens, i.e., q[CLS] and k[CLS], to form Q =
{
Q(j)

}Ns

j=1
, K =

{
K(j)

}Ns

j=1
.

In which, Q(j) and K(j) denote sets of query and key tokens, respectively,

belonging to the same jth segment: Q(j) =
{
qi ∈ Q|si = j

}N

i=1
, K(j) ={

ki ∈ K|si = j
}N

i=1
. Fourth, it computes Ns landmarks for the query (Q̃)

and key (K̃) by computing the average of the tokens within each segment: Q̃ ={
1

C(j)

∑
Q(j)

}Ns

j=1
, K̃ =

{
1

C(j)

∑
K(j)

}Ns

j=1
where C(j) denotes the the number

of the patch tokens belonging to the jth segment. Fifth, it concatenates Q̃ and
K̃ with [CLS] tokens, forming Q̃ and K̃: Q̃ = Concatenate

(
q[CLS], Q̃

)
, K̃ =

Concatenate
(
k[CLS], K̃

)
. Last, Q̃ and K̃ are utilized to compute the Nyström

self-attention as described in Eq. 1.

3 Experiments and Results

3.1 Datasets

CAMELYON16 [4]. The dataset was obtained from the CAMELYON16 chal-
lenge, which was designed to evaluate algorithms for metastasis detection. There
are 399 WSIs in total, and the official train-test split is used. Specifically, 216,
54, and 129 WSIs are employed for training, validation, and testing, respectively.
WSIs are tiled to 3,617,584 patches, with 9066.6±6273.6 patches per WSI. In
this study, we use CAMELYON16 for tumor vs. non-tumor classification.

TCGA-BRCA. The dataset includes a total of 875 WSIs for breast cancer
sub-typing, such as Invasive Ductal Carcinoma (IDC) versus Invasive Lobular
Carcinoma (ILC). These annotated WSIs are available on the NIH Genomic
Data Commons Data Portal. Following [2], we use the ratio of 0.8:0.1:0.1 for
the train-val-test split, which are 715 and 79 WSIs for training and validation,
respectively, and 81 WSIs for testing. 2,672,891 patches are generated from the
WSIs, with 2567.6±1592.8 patches per WSI.
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3.2 Implementation Details

To obtain bag of patches from a WSI, we follow the pipeline provided in the
previous study [11]. For FALFormer, we set the number of transformer layers L
to 2 and the model dimension dmodel to 768, which are inspired by designs of
Vision Transformers and TransMIL. The number of segmentsNs is set to 256. For
feature extraction, we utilize two pre-trained models: ResNet-50 [6], pre-trained
on ImageNet1K, and CTransPath [14], which is a SwinT-based architecture pre-
trained on histopathology datasets. ResNet-50 and CTransPath produce feature
vectors of sizes df = 1024 and df = 768, respectively. FALFormer is trained
for 20 epochs. During training, the RAdam optimizer is utilized, cross-entropy
loss is adopted, and the EarlyStopping strategy is employed to halt training if
the validation loss does not improve after 10 epochs. The best model is chosen
based on a validation set. The experiment is conducted only once for FALFormer
and other models under identical conditions, using the same random seed and
environment.

3.3 Comparative Study

For comparison, we include two established slide-level classification models: CLAM
[11] and TransMIL [12]. Both are MIL-based models. CLAM clusters positive and
negative patch embeddings within a WSI based on attention scores to improve
the bag representation. CLAM can contain a single attention branch (CLAM-
SB) and multi-attention branches (CLAM-MB). TransMIL employs a stack of
Transformer layers and a positional encoding to capture the spatial information
among patch embeddings. We build these three models using the same patch
sampling procedure and maintain the hyperparameters from the original works
for a fair comparison with FALFormer.

3.4 Result and Discussions

We assessed the performance of FALFormer and thee MIL-based models on the
two datasets (CAMELYON16 and TCGA-BRCA) using five evaluation metrics
including Accuracy (Acc), F1 score (F1), Area under the ROC curve (AUC), Re-
call, and Precision. Table 1 demonstrates the tumor vs. non-tumor classification
results on CAMELYON16. Overall, FALFormer with CTransPath achieved the
best classification performance of 96.12% Acc, 0.958 F1, 0.983 AUC, 0.957 Re-
call, and 0.960 Precision, substantially outperforming other MIL-based models
such as ≥2.32 Acc%, ≥0.023 F1, ≥0.005 AUC, ≥0.019 Recall, and ≥0.018 Preci-
sion. It is worth noting that, using ResNet50 as the feature extractor, there was
a consistent performance drop for all the models under consideration. Nonethe-
less, FALFormer with ResNet50 was superior or comparable to other MIL-based
models with ResNet50. These results indicate that the quality of WSI analysis
may be dependent on the choice of the feature extractor and the superior per-
formance of FALFormer is not due to a specific choice of the feature extractor.
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Table 1. Results on CAMELYON16 dataset.

Encoder Method Acc (%) F1 AUC Recall Precision

ResNet50

CLAM-SB [11] 86.05 0.849 0.910 0.844 0.857
CLAM-MB [11] 82.95 0.806 0.813 0.791 0.847
TransMIL [12] 82.20 0.808 0.869 0.805 0.813

FALFormer (ours) 86.05 0.848 0.934 0.840 0.860

CTransPath

CLAM-SB [11] 88.37 0.875 0.935 0.870 0.881
CLAM-MB [11] 93.80 0.935 0.968 0.938 0.931
TransMIL [12] 93.80 0.933 0.978 0.926 0.942

FALFormer (ours) 96.12 0.958 0.983 0.957 0.960

Table 2 shows the breast cancer sub-typing results on TCGA-BRCA. Similar
to the results on CAMELYON16, FALFormer outperformed the three competi-
tors regardless of the choice of the feature extractor, highlighting the strength
of FALFormer. FALFormer with CTransPath, in particular, obtained the best
classification performance of 96.30% Acc, 0.937 F1, 0.970 AUC, 0.906 Recall, and
0.978 Precision. In a head-to-head comparison between ResNet50 and CTransPath,
CTransPath always gave a substantial performance gain for FALFormer and
other models except Recall for TransMIL; for instance ≥3.70% Acc, ≥0.060 F1,
≥0.017 AUC, and ≥0.059 Precision.

Table 2. Results on TCGA-BRCA dataset.

Encoder Method Acc (%) F1 AUC Recall Precision

ResNet50

CLAM-SB [11] 90.12 0.817 0.926 0.773 0.900
CLAM-MB [11] 91.36 0.844 0.942 0.805 0.912
TransMIL [12] 88.89 0.787 0.932 0.888 0.742

FALFormer (ours) 92.59 0.877 0.945 0.860 0.899

CTransPath

CLAM-SB [11] 95.06 0.914 0.958 0.875 0.971
CLAM-MB [11] 95.06 0.914 0.970 0.875 0.971
TransMIL [12] 93.83 0.888 0.949 0.844 0.964

FALFormer (ours) 96.30 0.937 0.970 0.906 0.978

Moreover, we conducted ablation experiments to evaluate the effectiveness of
FALSA. On CAMELYON16 and TCGA-BRCA, the performance of FALFormer
with and without FALSA was measured. FALFormer without FALSA utilizes
the original Nyström self-attention as described in Section 2.2. The results of the
ablation experiments are presented in Table 3. It is obvious that the adoption
of FALSA consistently enhances the classification performance regardless of the
dataset and the feature extractor except for Acc, Precision on CAMELYON16
(ResNet50), and AUC, Recall on TCGA-BRCA (CTransPath). This indicates
that the quality of landmarks has a direct bearing on the quality of the approx-
imation of the self-attention and the final classification performance. Equipped
with stronger landmarks by FALSA, FALFormer can facilitate improved analysis
of WSIs.
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Table 3. Ablation results demonstrating the effectiveness of FALSA.

Encoder
Self-

attention
CAMELYON16 TCGA-BRCA

Acc (%) F1 AUC Recall Precision Acc (%) F1 AUC Recall Precision

ResNet50
Nyström 86.05 0.824 0.905 0.824 0.886 90.12 0.827 0.922 0.797 0.873
FALSA 86.05 0.848 0.934 0.840 0.860 92.59 0.877 0.945 0.860 0.899

CTransPath
Nyström 94.57 0.941 0.948 0.933 0.953 95.06 0.926 0.971 0.946 0.909
FALSA 96.12 0.958 0.983 0.957 0.960 96.30 0.937 0.970 0.906 0.978

We also compared the performance and complexity trade-off within FAL-
Former and other competitors. We calculated the processing time for a WSI
with the highest number of cropped patches, GFLOPs for all WSIs, and VRAM
usage on CAMELYON16 using CTransPath as the feature extractor. These met-
rics are depicted in Figure 2. FALFormer exhibits the highest GFLOPs and
VRAM usage, possibly due to the usage of the entire patches. CLAM mod-
els had the smallest GFLOPs and VRAM usage but required the longest pro-
cessing time. TransMIL demonstrated the shortest processing time and second
largest GFLOPs and VRAM usage. The performance of TransMIL was, in gen-
eral, inconsistent (Table 1 and 2). Hence, the complexity analysis reveals that
FALFormer strikes an acceptable balance between efficiency and accuracy. All
measurements are calculated using a single NVIDIA RTX A6000 GPU.

Fig. 2. Comparison of Complexity-Performance Trade-off: (a) Performance (Acc, F1,
AUC) versus processing time for the most complicated WSI, (b) FLOPs for processing
all WSIs versus average Acc and F1, and (c) GFLOPs and VRAM usage.
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4 Conclusion

This study introduces FALFormer, a Transformer-based model for efficient and
effective WSI classification. FALFormer revisited the Nyström-based self-attention
mechanism and proposed FALSA, which leverages the high-level patch features
and K-means algorithm to enhance the representative power of the landmarks
and the quality of the approximation of the self-attention computation. Equipped
with FALSA, FALFormer demonstrates its effectiveness in analyzing WSIs and
conducting the slide-level classification.
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