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Abstract. The detection of semantic and covariate out-of-distribution
(OOD) examples is a critical yet overlooked challenge in digital pathol-
ogy (DP). Recently, substantial insight and methods on OOD detection
were presented by the ML community, but how do they fare in DP ap-
plications? To this end, we establish a benchmark study, our highlights
being: 1) the adoption of proper evaluation protocols, 2) the comparison
of diverse detectors in both a single and multi-model setting, and 3) the
exploration into advanced ML settings like transfer learning (ImageNet
vs. DP pre-training) and choice of architecture (CNNs vs. transformers).
Through our comprehensive experiments, we contribute new insights and
guidelines, paving the way for future research and discussion. We con-
tinuously update our code at https://github.com/jihunoh2/OODD4DP.

Keywords: Digital pathology · Out-of-distribution detection · Misclas-
sified detection · Robustness · Transfer learning

1 Introduction

The fickleness and fragility of deep neural networks (DNNs) makes them prone
to overconfident but erroneous predictions, particularly under distribution shifts.
In high-stake domains like digital pathology (DP), a subsequent misdiagnosis can
be catastrophic, thus far hindering real-world DNN deployments. To facilitate
trustworthy AI practices in DP, it is pivotal for DNNs to communicate “I don’t
know ” when unsure of its own prediction, allowing clinicians to intervene.

Background. Known as an out-of-distribution (OOD) detection problem,
let us denote f : X → Y the classifier model, the focus of our article. Letting
P (XID,YID) ⊆ X ×Y the joint in-distribution (ID) defined by the training set,
a sample is OOD if (x, y) /∈ P (XID,YID). In literature, OOD is categorized
into either semantic or covariate; semantic OOD arise from label-altering shifts
y /∈ P (Y |X), whereas covariate OOD preserves the ID labels y ∈ P (Y |X) but
are modified by the image space x /∈ P (X). Note, y /∈ P (Y |X) generally entails
x /∈ P (X), and thus, semantic OOD is shifted by the image space too. Since the
model cannot inherently handle semantic OOD, we seek to flag them using some
scoring function expressing OOD extent; examples include (but is not restricted

https://github.com/jihunoh2/OODD4DP
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to) the softmax uncertainty. However, in the case of covariate OOD, uncondi-
tional detection is undesirable as it conflicts with generalization,1 limiting its
open-world application. To avoid such a dilemma, the emerging consensus in the
ML community is to detect just its failures (i.e., misclassified instances) [6, 13].
From here onwards, we refer to semantic and misclassified covariate OOD detec-
tion as S-OODD and MC-OODD, respectively.

In the field of DP, S-OODD is required foremost because models are conceived
in a closed-set environment. For instance, many breast datasets do not include
borderline atypical lesion or rarer carcinoma subtypes due to its rarity and/or
annotating difficulties. Likewise, the need for MC-OODD is inevitable because
DNNs are prone to overfit or memorize, even finding shortcuts by picking up
spurious correlations (e.g., site-specific attributes coming from the staining and
scanning procedures) in lieu of pathological generalization.

Related work. Few work have studied detection tasks in DP [2, 19, 29].
Ref. [29] inspected MC-OODD (across different organ & hospital) and S-OODD
(head/neck SCC) over the Camelyon2 dataset. Ref. [2] benchmarked various
OOD detectors in PatchCamelyon, designating external datasets as OOD. Re-
cently, [19] investigated the detection of diffuse large B-cell lymphoma w.r.t.
Camelyon, and prostate images containing colorectal sections w.r.t. colon-free
prostate biopsies. We however recognize several deficiencies in these work.

i) Misleading practice. Not all detection objectives therein conform to the
above-mentioned consensus. For instance, let us consider the example of de-
tecting colorectal invasion in prostate biopsies [19], which arises due to their
anatomical proximity. Such a shift from co-occurrence does not necessarily in-
duce a label change and is closer to a covariate OOD, thus, calling for MC-
OODD. Note, it is possible for certain cases to potentially alter the patient’s
treatment/prognosis and become semantic OOD; in these scenarios, their de-
tection makes sense, but such a distinction is not made in the above work. In
addition, the goal of MC-OODD is to quantify how separable misclassifications
are from its correct counterpart, regardless of their ratios. However, using AU-
ROC or AUPR like in [29] yields a systemic bias as these metrics are sensitive
to the model’s accuracy [23,24], preventing a fair study when comparing factors
affecting OOD detection performance but also simultaneously the model’s base
performance e.g., choice of DNN architecture.

ii) Limited OOD detectors. Many works [19, 29] adopt multi-model uncer-
tainty quantification (UQ) to score OOD-ness, e.g., ensembles or approximate
Bayes. However, these uncertainty measures like Shannon Entropy and Mutual
Information can be falsely low far away from the ID data [10, 30]. While [2]
explored diverse detectors beyond those UQ-based, all are from 2020 or prior.
More recent SOTA methods such as ViM [31] have yet to be explored in DP.

iii) Easy or non-public datasets. The datasets used are simple such as the
binary classification task in Camelyon. In addition, some “OODs” therein are far

1 This is because covariate OODs share the ID labels, resulting in robust models
capable of generalizing across such out-of-domains.

2 https://camelyon17.grand-challenge.org/Home/
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Fig. 1: Our experiments. We aim to i) generalize over corrupted (covariate-
shifted) ID or detect its misclassification, and ii) always detect semantic OOD.

(or very-far) w.r.t. ID, making them easy to discern, e.g., prostate vs. colon vs.
breast lymph nodes [19], and H&E vs. other dyes [2]. Oftentimes, the work is
also not reproducible because internal datasets were used [19,29].

iv) Limited depth. They overlook crucial factors known to influence robust-
ness and OOD behavior like pre-training [9] and DNN architecture [24].

Contributions. Acknowledging these shortcomings, we herein present an
enhanced benchmark study. Concretely, we contribute in the following ways.

i) Proper protocols. Adopting public datasets, we simulate an Open Set
Recognition (OSR) setting by excluding a small fraction of the class during
training and afterwards perform S-OODD w.r.t. the held-out classes, permitting
S-OODD evaluation in an indisputable way. As for MC-OODD, we apply com-
mon DP corruptions in [36] to the ID test set and report the Prediction Rejection
Ratio (PRR) [23], a metric agnostic to the model accuracy. Our experiments (il-
lustrated in Fig. 1) are free from any of the above-mentioned bias/malpractice
or shortcomings, providing thus the most objective and reproducible benchmark
to date on OOD detection in the context of DP.

ii) Wider scope. In addition to UQ scores, we include a variety of recent fre-
quentist (i.e., single-model) detection methods from top-tier ML conferences. We
also investigate the impact of transfer learning (TL), specifically when adopting
pre-trained DNN weights conceived from natural and DP images. Last but not
least, we comparatively explore different architectures, namely fully-convnets
(CNNs) vs. transformers, the latter having seen a surge in popularity lately.

iii) Novel insights. Through our extensive experiments, we answer questions
like: Is there a detector best suited for S-OODD and/or MC-OODD? Does
ensemble-based UQ (widely regarded the gold-standard) really perform best?
Should we always pre-train over DP data? Are transformers better than CNNs
like recent studies suggest [1]? Whereas these are questions are popular subjects
in the ML OOD detection literature, they have yet to be recognized and studied
in the broader DP community as OOD detection has just recently started to gain
traction. Our findings serve as a guide for practitioners and open up research
questions and discussions for the future.

2 Benchmark Setup

Our overall pipeline involves training a classifier using an ID train set, and after-
wards evaluating S-OODD and MC-OOD by respectively performing the binary
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classification of semantic OOD vs. ID test set and correctly classified covariate
OOD vs. misclassified covariate OOD using some OOD detection method.

Datasets. We consider two public H&E image datasets: BreakHis [26],
consisting of eight breast carcinoma subtypes, and NCT-CRC [15], including
nine colorectal tissue types. We simulate OSR splits in Tab. 1. Overall, the se-
mantic OOD includes both near (hard) and far (easy) cases. For instance, the
fine-grained MUS in NCT-CRC is hard to detect w.r.t. STR (and vice versa)
due to their shared fibrous structure. In contrast, we anticipate ADI, BACK
(NCT-CRC) or M-LC (BreakHis) to be much easier given their drastically dif-
ferent appearances. For BreakHis, we perform a 4:1 train-test split among the ID
samples, while using the CRC-VAL as the test set for NCT-CRC. To generate
covariate OOD, we apply the DP corruptions from [36] with a severity level of
3, which includes several types of digitization, blur, color, and artifact.

Training details. All classifiers are trained using the focal loss. We crop
images at 224×224 and apply random flips and transpose. We allocate a small
hold-out subset for validation purposes, evaluating its accuracy at every 25 iter-
ations. Using a mini-batch size of 32, we initialize the Adam learning rate to 1e-4
and downstep by 0.3 upon reaching the [2nd, 4th, 5th, 6th] times the validation
set’s performance fail to improve, terminating the training afterwards.

ML configs. It is well-established that TL by initializing from pre-trained
weights of another task improves robustness in downstream applications [9].
The de-facto protocol in computer vision is to fine-tune from ImageNet-1K
(IN1K) weights. However, it is common belief that TL is more beneficial when
the pre- and fine-tuning sources are similar in domain to capitalize feature
reuse. Multiple recent works have thus proposed general-purpose DP models for
TL, developed via non-supervised learning over massive amounts of unlabeled
data [12,14,25,35]. We delve into both TL options across two DNN backbones:
(C1) ResNet-50: We compare training from scratch (i.e., no TL; de-novo)
and TL from IN1K and three DP-specific models in [14], each embodying a
distinct self-supervised learning (SSL) method trained with 19M H&E patches
extracted from The Cancer Genome Atlas (TCGA): MoCo v2 [4], SwAV [3], and
BT [33]. (C2) ViT-B/16 [5]: We compare de-novo, IN1K, and three founda-
tional large vision-language models (LVLMs): CLIP [25], BiomedCLIP [35], and
QuiltNet [12], in order of decreasing domain gap w.r.t. our downstream datasets.

Table 1: OSR configs. I and O denotes ID (closed-set) and semantic OOD
(open-set), respectively. The four/three-fold OSR split is arbitrary, aimed to
reduce bias in our analysis. †B, Benign; A, Adenosis; F, Fibroadenoma; PT, Phyllodes Tumor; TA,
Tubular Adenoma; M, Malignant; DC, Ductal Carcinoma (C); LC, Lobular C; MC, Mucinous C; PC, Papillary C.
‡ADI, adipose; BACK, background; DEB, debris; LYM, lymphocytes; MUC, mucus; MUS, muscle; NORM, normal
mucosa; STR, C-associated stroma; TUM, adenocarcinoma epithelium.

BreakHis† [26] NCT-CRC‡ [15]
OSR B-A B-F B-TA B-PT M-DC M-LC M-MC M-PC ADI BACK DEB LYM MUC MUS NORM STR TUM

no. 1 O I I I O I I I O I I O I I O I I
no. 2 I O I I I O I I I O I I O I I O I
no. 3 I I O I I I O I I I O I I O I I O
no. 4 I I I O I I I O
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Table 2: Overview of frequentist methods. Feat. refers to the classifier’s
penultimate activation map. We follow the original paper’s guidelines to set
hyperparameters where c and d is the class number and the feat’s dimension.

Detector Space ID data free? Working principle Hyperparameter

MSP (ICLR’17 [8]) Prob. Y Max softmax prob. n/a
Maha (NeurIPS’18 [18]) Feat. N Min feat. dist. to train set’s classwise centroids n/a
R+E (NeurIPS’21 [27]) Feat./Logit N Feat. truncation followed by energy function Truncate by ID’s 98%.
GrN (NeurIPS’21 [11]) Prob. Y Backpropagated gradients n/a
MLS (ICML’21 [7]) Logit Y Max logit n/a
KLM (ICML’21 [7]) Prob. N Min KL div. w.r.t. the train set’s class-wise probs. n/a
KNN (ICML’22 [28]) Feat. N k-th nearest neighbor dist. w.r.t. train set’s feats. k ≈ 2.5× c
ViM (CVPR’22 [31]) Feat./Logit N Norm of feat’s residual projection, plus energy Subspace dim. ≈ d/2
GEN (CVPR’23 [20]) Prob. Y Generalized entropy of prob. γ = 0.1; no suppression

CLIP is trained with 300M natural image-caption pairs, BiomedCLIP incorpo-
rates 15M pairs from PubMed but does not include H&E, whereas QuiltNet
utilizes 1M pairs of H&E-text pairs scraped from MedTwitter and YouTube. We
take the IN1K and CLIP pre-trained weights from the public timm-repository.3

DNN architecture is also known to influence OOD behavior. We further in-
spect (C3) different architectures, notably CNNs (ResNet, ConvNeXt [22])
vs. transformers (ViT, Swin [21]). For a fair comparison, it is crucial to employ
the same TL recipe to minimize its influence, but is not possible with existing
pre-trained checkpoints which are limited to just a single architecture backbone.
Hence, we pre-train with the 32 class pan-cancer TCGA dataset using the patch-
level annotations in [16], adopting a training recipe similar to the above. Note,
unlike (C1) & (C2), this pre-training is fully-supervised, developed in a much
light-weight manner with ∼272K patches, trainable in a single commercial GPU
in less than a few hours, presenting hence a unique perspective on DP-specific
TL. We dub our checkpoints as SIAYN (short for Supervision Is All You Need)
and make them public along with our code.

Detectors. In recent years, a plethora of OOD detection methods were pro-
posed. We focus on post-hoc/frequentist (i.e., single-model inference-time)
methods which are competitive and (almost) cost-free, summarized in Tab. 2:
Max Softmax Probability (MSP) [8], Mahalanobis distance (Maha) [18], Re-
Act followed by Energy (R+E) [27], GradNorm (GrN) [11], Max-Logit Score
(MLS) [7], KL-Matching (KLM) [7], kth Nearest Neighbor (KNN) [28], Virtual-
Logit Matching (ViM) [31], and Generalized Entropy (GEN) [20]. They are cho-
sen on the basis of popularity, competitiveness, and diversity in principle, in
which information are leveraged from the feature, logit, and/or softmax proba-
bility spaces to handcraft a granular OOD scoring function beyond conventional
uncertainty measures. Note, some methods are more prohibitive from needing
access to ID training samples, which may be confidential, or embedding that can
be inaccessible in black-box models; both are pertinent in the context of DP.

As hinted, UQ orthogonally provides a means to detect OOD as well. Hence,
we inspect Deep Ensembles (DE) [17], the UQ gold-standard, using a heteroge-
neous setup comprised of four members and evaluate two uncertainty measures:
3 Timm names: resnet50.a1_in1k, vit_base_patch16_224.augreg2_in21k_ft_in1k,
vit_base_patch16_clip_224.openai.
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Total Uncertainty (TU), the Shannon entropy of the DE-averaged probability,
and Epistemic Uncertainty (EU), the mutual information across the members’
probabilities. Unlike the post-hoc schemes, DE incurs overhead from training
multiple models and performing multiple forward-passes during inference.

Metrics. For S-OODD, we report the AUROC (↑; arrow indicates which
direction is better). For MC-OODD, we report the PPR (↑) [23], where closer
to 100% indicates correlation of low confidence to mispredictions; conversely,
zero/negative values mean no/anti-correlation and is thus undesirable. We refer
to [23] for full calculation details. We also report the class-wise macro-averaged
accuracy (Acc., ↑) of the ID test and covariate OOD sets to present a full pic-
ture on robustness (e.g., a model with trivial performance can display near zero
accuracy but high PRR). Note, when using the DE as the detector, we report
the accuracy over the DE-averaged predictions.

Table 3: (C1) Results of various TL configs in ResNet-50.
Single-Model DE [17] (×4)

Pre-train (TL) Acc% MSP [8] Maha [18] R+E [27] GrN [11] MLS [7] KLM [7] KNN [28] ViM [31] GEN [20] Acc% TU EU

S1 BreakHis: ID Acc% & S-OODD AUROC%
None 73.31 57.85 61.58 57.39 54.11 56.89 58.4 70.15 62.33 56.47 74.04 59.24 61.83
IN1K 43.82 64.86 48.94 62.14 64.63 65.62 53.58 64.14 48.60 65.68 47.75 67.19 49.63
MoCo v2 [4, 14] 95.42 72.22 82.53 74.40 73.15 73.69 70.72 74.62 81.94 75.31 95.88 77.30 77.60
SwAV [3, 14] 96.61 79.40 83.44 82.01 78.16 81.99 76.74 75.35 86.37 82.95 97.02 83.86 77.09
BT [14, 33] 94.89 72.81 80.79 76.25 66.83 76.22 73.09 74.23 81.05 75.98 95.73 76.89 78.76

S2 NCT-CRC: ID Acc% & S-OODD AUROC%
None 78.92 56.64 59.14 59.59 55.29 56.86 66.33 69.01 64.92 56.96 79.96 57.84 62.38
IN1K 93.83 84.72 76.45 84.99 70.77 84.86 83.86 87.25 84.38 83.16 94.62 87.47 76.31
MoCo v2 [4, 14] 95.19 78.37 82.61 78.88 79.87 78.57 76.59 79.88 85.20 79.27 95.69 83.07 81.72
SwAV [3, 14] 95.78 80.86 87.52 86.39 72.96 82.43 82.08 86.98 88.59 82.80 96.28 84.44 78.62
BT [14,33] 96.18 81.82 87.79 86.64 77.06 84.80 82.86 92.08 91.44 85.21 96.81 87.30 84.19

S3 BreakHis: Covariate OOD Acc% & MC-OODD PRR%
None 45.64 18.84 1.33 11.67 11.29 12.54 9.22 9.41 3.04 11.37 46.11 17.29 12.80
IN1K 28.91 21.53 -8.61 12.55 19.51 21.59 4.02 16.17 -7.36 20.72 30.47 22.43 -9.55
MoCo v2 [4, 14] 58.41 21.12 33.34 16.23 17.88 18.26 21.78 22.40 34.44 18.81 59.91 25.39 30.16
SwAV [3, 14] 57.30 34.05 33.41 31.41 34.19 33.04 34.81 33.66 36.56 34.30 57.95 37.41 19.38
BT [14, 33] 58.23 27.79 34.66 27.62 28.27 27.18 27.25 37.14 35.55 27.68 59.43 34.11 35.47

S4 NCT-CRC: Covariate OOD Acc% & MC-OODD PRR%
None 53.06 15.85 11.34 7.25 5.24 7.44 16.00 25.00 13.32 7.46 53.30 15.88 17.12
IN1K 73.47 50.40 29.11 45.10 36.47 48.76 47.58 46.66 36.51 45.18 75.07 50.37 25.58
MoCo v2 [4, 14] 80.19 49.29 42.60 46.87 49.32 48.11 45.95 48.84 48.11 48.18 82.32 53.22 49.26
SwAV [3, 14] 81.75 61.68 51.62 59.34 48.45 60.18 61.80 60.72 53.20 58.35 83.31 62.62 50.42
BT [14, 33] 81.63 58.01 49.36 52.80 40.30 53.95 55.97 55.47 54.46 53.83 83.56 62.00 55.19

Table 4: (C2) Results of various TL configs in ViT-B/16.
Single-Model DE [17] (×4)

Pre-train (TL) Acc% MSP [8] Maha [18] R+E [27] GrN [11] MLS [7] KLM [7] KNN [28] ViM [31] GEN [20] Acc% TU EU

S1 BreakHis: ID Acc% & S-OODD AUROC%
None 43.28 53.26 58.92 54.81 53.89 54.01 55.33 63.37 60.49 54.70 47.75 54.47 57.87
IN1K 95.06 68.58 77.43 73.85 67.27 73.70 68.26 72.22 78.98 73.57 96.60 75.06 76.04
CLIP [25] 56.93 55.96 63.97 59.35 56.33 58.57 54.80 60.90 65.09 58.63 69.45 58.88 54.18
BiomedCLIP [35] 95.49 73.71 77.74 78.25 74.42 78.51 74.16 76.18 80.81 78.51 96.60 79.17 80.68
QuiltNet [12] 60.16 56.03 64.17 60.25 59.40 59.36 54.02 62.08 66.13 60.07 67.51 61.19 60.12

S2 NCT-CRC: ID Acc% & S-OODD AUROC%
None 76.85 63.63 67.55 62.24 64.09 63.20 66.95 68.35 69.98 63.50 78.00 66.36 65.83
IN1K 97.21 86.03 84.20 87.86 82.30 87.46 86.62 86.21 87.24 87.98 97.84 90.73 87.38
CLIP [25] 93.91 71.26 78.77 72.76 72.93 73.02 74.48 81.95 79.84 73.03 96.33 75.61 73.2
BiomedCLIP [35] 96.49 83.95 74.23 86.78 82.94 86.52 84.99 86.48 83.36 86.89 97.04 87.92 85.76
QuiltNet [12] 95.02 74.38 81.73 72.05 73.43 73.09 75.75 83.18 82.29 73.94 96.44 78.79 77.80

S3 BreakHis: Covariate OOD Acc% & MC-OODD PRR%
None 37.06 20.50 6.05 14.46 15.70 17.04 2.52 11.93 10.27 14.84 39.65 20.18 9.73
IN1K 67.37 41.77 18.16 31.31 32.80 34.48 34.96 22.51 21.49 35.74 70.47 45.05 33.34
CLIP [25] 41.19 19.37 4.92 16.56 15.87 18.27 2.43 7.31 7.74 17.23 48.46 20.65 8.88
BiomedCLIP [35] 70.07 48.61 26.45 39.81 42.83 43.14 45.60 34.71 32.95 44.09 73.14 52.83 42.77
QuiltNet [12] 44.06 20.69 5.26 17.50 17.64 19.98 1.30 11.42 9.74 18.39 48.89 20.81 9.96

S4 NCT-CRC: Covariate OOD Acc% & MC-OODD PRR%
None 63.87 40.89 8.10 16.19 33.64 23.30 29.48 24.13 12.23 22.08 65.04 37.35 25.27
IN1K 90.13 75.09 46.39 65.11 67.61 69.29 72.90 57.45 51.61 68.66 91.70 74.92 62.14
CLIP [25] 75.15 45.88 33.14 36.35 40.58 40.48 41.99 42.18 35.99 40.05 78.29 49.63 36.70
BiomedCLIP [35] 87.03 68.05 27.74 58.42 62.38 62.00 65.39 56.36 43.15 62.14 88.76 68.03 58.38
QuiltNet [12] 77.17 49.40 43.37 39.91 42.37 44.75 46.18 48.04 44.20 43.68 79.99 53.54 46.49
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Table 5: (C3) Results of diff. architectures using our SIAYN TL. We chose size
variants of ConvNeXt, ViT, Swin to fit in 24GB of GPU.

Single-Model DE [17] (×4)
Pre-train (TL) Acc% MSP [8] Maha [18] R+E [27] GrN [11] MLS [7] KLM [7] KNN [28] ViM [31] GEN [20] Acc% TU EU

S1 BreakHis: ID Acc% & S-OODD AUROC%
ResNet-50 93.98 76.25 79.15 79.11 74.41 79.04 73.43 74.47 83.33 79.29 94.43 80.22 73.70
ConvNeXt-S [22] 96.47 78.38 83.64 81.71 78.31 82.02 78.43 74.63 85.13 82.60 97.40 82.75 82.84
ViT-B/16 [5] 96.22 77.20 80.50 80.59 71.71 80.62 74.86 72.66 82.13 80.80 96.94 81.55 80.62
Swin-T [21] 96.37 74.75 85.28 79.35 71.48 79.27 74.27 75.40 87.05 79.71 97.41 80.07 81.10

S2 NCT-CRC: ID Acc% & S-OODD AUROC%
ResNet-50 95.37 82.51 78.08 84.49 72.92 83.78 82.20 84.03 82.68 82.47 95.95 85.04 79.45
ConvNeXt-S [22] 96.04 86.20 92.76 87.65 86.03 87.52 85.72 92.74 92.84 88.38 97.06 89.42 85.94
ViT-B/16 [5] 96.79 85.64 92.08 86.73 80.07 86.58 86.69 90.79 92.69 86.96 97.62 88.77 88.09
Swin-T [21] 95.82 82.07 91.45 84.96 77.60 84.57 81.91 89.48 91.95 84.89 96.77 86.56 86.20

S3 BreakHis: Covariate OOD Acc% & MC-OODD PRR%
ResNet-50 53.06 26.66 17.44 27.03 17.91 26.09 28.90 21.83 19.70 22.74 54.34 27.78 17.41
ConvNeXt-S [22] 62.93 45.78 26.82 36.68 42.33 41.40 42.74 31.63 29.86 41.04 65.63 47.82 37.10
ViT-B/16 [5] 67.37 45.71 9.80 36.35 37.92 40.19 42.64 19.27 17.27 40.62 69.61 47.98 35.95
Swin-T [21] 62.07 39.72 23.49 32.02 33.92 35.32 36.68 27.38 26.82 35.79 64.38 42.76 35.28

S4 NCT-CRC: Covariate OOD Acc% & MC-OODD PRR%
ResNet-50 76.52 49.29 34.53 43.90 34.08 48.27 47.88 41.83 37.49 42.14 78.81 48.99 34.51
ConvNeXt-S [22] 84.88 63.53 37.85 52.21 58.36 57.85 62.03 51.01 40.92 56.64 88.47 62.19 52.07
ViT-B/16 [5] 84.38 61.44 23.11 50.55 55.56 54.76 59.21 43.61 30.65 54.52 87.77 59.45 52.22
Swin-T [21] 79.30 54.44 35.40 47.21 48.57 50.44 51.49 46.31 37.76 50.81 83.09 56.70 50.85

3 Results and Discussion

We report the results of experimental configs. (C1), (C2), (C3) in Tabs. 3-5,
respectively. For clarity, in each table, we organize our results into four row
Sections: S1 and S2 lists the ID Acc. and each detector’s S-OODD AUROC
over BreakHis and NCT-CRC, respectively. Note, we display ID Acc. separately
for DE. We report the averaged metrics over the entire OSR splits, each with 10
trials using different random seeds. Similarly, S3 and S4 respectively shows the
covariate OOD Acc. and each detector’s MC-OODD PRR over BreakHis and
NCT-CRC. The best metric across the TL (Tabs. 3-4) or architecture (Tab. 5)
configs are in bold (column-wise direction). For each TL/architecture config, we
further highlight the top-3 (1st, 2nd, 3rd) performant detectors (row-wise).

Does DP domains pose more challenges? Not really – At the very
least, the AUROC and PRR of our experiments do not deviate from the statis-
tics therein natural imagery benchmarks [24,34]. This is promising as it suggests
that we can tackle this problem in a general framework catered to natural images.
However, another popular line of research is Outlier Exposure (OE), in which an
auxiliary OOD set is exploited during training to encourage low confidence. Un-
like natural imagery where a plethora of effective OE candidate sets are publicly
available, collecting or synthesizing such a dataset in DP is challenging, even
unfeasible. We leave this to future work.

Accuracy can be deceptive. While accuracy generally translates to S-
OODD and MC-OODD performance, solely relying on it to rank TL or archi-
tecture configs. when all accuracies are within ±1% of each other is precarious.
For instance, ViT-B/16 in Tab. 5 displays the highest accuracy in S2 & S3 but
seldom beats ConvNeXt-S in S-OODD or MC-OODD across most detectors.

No universal SOTA detector. The ranking among detectors in Tabs. 3-5
is volatile, sensitive to the dataset, TL, and architecture. In general though, ViM
is superior in S-OODD followed by KNN, Maha, TU, and GEN. Conversely,
TU and MSP excels in MC-OODD followed by KLM and ViM. As a rule



8 JH Oh et al.

of thumb, we recommend these detectors as an initial choice. From these trends,
we surmise that the information from the rich feature representation is vital for
S-OODD, whereas MC-OODD benefits more when the detector operates near
the final output space. Thus, achieving all-round superior performance in both
tasks via a single detector is elusive. Note, the differences in practical constraint
(e.g., ViM, KNN, Maha require ID samples and the feature embedding, while
TU adopts the costly DE framework, which is not suited for rapid or mobile
applications) further underscores this “no winner ” posture.

The contradiction of UQ. Uncertainty due to OOD-ness must axiomati-
cally be encoded in EU, whereas TU is the combined sum of OOD and aleatoric
sources (AU, e.g., ambiguity near class boundaries). Surprisingly though, EU
detectors often underperform TU, further supported by [10, 30, 32]. Is this a
problem? That is, can’t we just use TU regardless of such an axiomatic con-
tradiction? While doing so imposed no practical setback in our experiments, we
anticipate it to be a problem when fuzzy data are non-negligible or the disentan-
glement of AU-EU sources is crucial (e.g., in active learning, we generally wish
to avoid querying fuzzy data).

Is DE worth the extra cost? The combination of ViM+MSP enjoys com-
parable/superior performance to the DE. Hence, a powerful frequentist detec-
tor(s) may be all you need. This is promising news for efficient DP as novelties
and errors can be sought in a seamless and timely fashion. We recognize though
that ensembling always boosts accuracy, and thus, DE holds merit in this respect.

DP-based TL helps, albeit unpredictably. We see compelling improve-
ment over de-novo. However, further statements cannot be made. For instance,
there is no clear winner among the SSL methods (Tab. 3), e.g., SwAV is superior
in S-OODD over BreakHis but never in NCT-CRC. QuiltNet also surprisingly
fails to outperform BiomedCLIP (Tab. 4), in spite of the exposure to H&E in
the former but not the latter; in fact, Quiltnet’s gain is relatively marginal in
BreakHis. Moreover, SIAYN (Tab. 5) is unexpectedly effective, sometimes on par
or surpassing their SSL and LVLM counterparts (e.g., MoCo v2, BiomedCLIP),
despite using a much smaller dataset. Although we affirm the advantages of DP
TL, these examples (some counterintuitive) demonstrate that much research is
still needed to codify its exact effects.

What about TL with natural images? Such TL still often helps, some-
times more than DP TL as demonstrated by the NCT-CRC experiments in
Tab. 4 wherein IN1K outperformed BiomedCLIP. In large, however, it is less
advantageous, even performing worse than de-novo in certain cases (BreakHis
experiments in Tab. 3). Our verdict is, TL with natural imagery on average
helps, however, further research is likewise needed (especially on when it fails)
and should be implemented with caution. TL from DP is the safer option and
we recommend IN1K only when it is unavailable. In this spirit, we extend our
SIAYN checkpoints to over ten popular, off-the-shelf DNN architectures and
release them with our code.

ConvNeXt is robust, as are transformers. Recent studies to date have
been dedicated to explaining the superior robustness properties of transformers
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[1]. However, [24] showed that more advanced CNNs like ConvNeXt can behave
just as robustly. Looking at Tab. 5, our findings agree with the latter study
wherein ConvNeXt-S surpass ViT-B/16 and Swin-T in more number of metrics.
Nonetheless, transformers perform well too and we conclude by saying all three
are SOTA. However, not all CNNs are equal as we see a considerable gap between
ResNet-50 and ConvNeXt-S. Hence, lumping them as one or analyzing just the
ResNet family of architectures may give a false impression of CNNs. From this
result, we also urge to move away from ResNets, which remain a popular choice
in DP, and onto more SOTA CNNs like ConvNeXt.

4 Concluding Remark

We present an in-depth robustness study on S-OODD and MC-OODD in DP,
with an emphasis on proper procedures and diverse settings. We reveal insights,
some of which challenge the status quo taken for granted, e.g., DE uncertainties
may be redundant, TL from DP may not always behave as expected, CNNs can
be just as robust as transformers. We hope our findings serve as a stepping stone
to further exploration of pertinent themes in the realms of DP.

Acknowledgments. Research reported in this publication was supported by the Na-
tional Institutes of Health under award numbers R01EB009745, R01CA260830, and
R21CA263147. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health. This work
was also supported by NSF grant 2243257, the National Science Foundation Science
and Technology Center for Quantitative Cell Biology. Rohit Bhargava is a CZ Biohub
Investigator.

Disclosure of Interests. The authors declare no conflict of interest.

References

1. Bai, Y., Mei, J., Yuille, A., Xie, C.: Are transformers more robust than cnns? In:
Adv. Neural Inform. Process. Syst. pp. 26831–26843 (2021)

2. Cao, T., Huang, C.W., Hui, D.Y.T., Cohen, J.P.: A benchmark of medical out of
distribution detection. J. Mach. Learn. Biomed. Imaging (2020)

3. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised
learning of visual features by contrasting cluster assignments. In: Adv. Neural
Inform. Process. Syst. vol. 33, pp. 9912–9924 (2020)

4. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum con-
trastive learning. arXiv (2020)

5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. In: Int. Conf. Learn.
Represent. (2020)

6. Guérin, J., Delmas, K., Ferreira, R., Guiochet, J.: Out-of-distribution detection is
not all you need. In: AAAI Conf. Artif. Intell. vol. 37, pp. 14829–14837 (2023)



10 JH Oh et al.

7. Hendrycks, D., Basart, S., Mazeika, M., Zou, A., Kwon, J., Mostajabi, M., Stein-
hardt, J., Song, D.: Scaling out-of-distribution detection for real-world settings. In:
Int. Conf. Mach. Learn. pp. 8759–8773 (2022)

8. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-
distribution examples in neural networks. In: Int. Conf. Learn. Represent. (2016)

9. Hendrycks, D., Lee, K., Mazeika, M.: Using pre-training can improve model ro-
bustness and uncertainty. In: Int. Conf. Mach. Learn. pp. 2712–2721 (2019)

10. Henning, C., D’Angelo, F., Grewe, B.F.: Are bayesian neural networks intrinsically
good at out-of-distribution detection? In: Int. Conf. Mach. Learn. Worksh. (2021)

11. Huang, R., Geng, A., Li, Y.: On the importance of gradients for detecting dis-
tributional shifts in the wild. In: Adv. Neural Inform. Process. Syst. vol. 34, pp.
677–689 (2021)

12. Ikezogwo, W., Seyfioglu, S., Ghezloo, F., Geva, D., Sheikh Mohammed, F.,
Anand, P.K., Krishna, R., Shapiro, L.: Quilt-1m: One million image-text pairs
for histopathology. In: Adv. Neural Inform. Process. Syst.

13. Jaeger, P.F., Lüth, C.T., Klein, L., Bungert, T.J.: A call to reflect on evaluation
practices for failure detection in image classification. In: Int. Conf. Learn. Repre-
sent. (2022)

14. Kang, M., Song, H., Park, S., Yoo, D., Pereira, S.: Benchmarking self-supervised
learning on diverse pathology datasets. In: IEEE Conf. Comput. Vis. Pattern
Recog. pp. 3344–3354 (2023)

15. Kather, J.N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C.A.,
Gaiser, T., Marx, A., Valous, N.A., Ferber, D., et al.: Predicting survival from
colorectal cancer histology slides using deep learning: A retrospective multicenter
study. PLoS Med. 16(1), e1002730 (2019)

16. Komura, D., Kawabe, A., Fukuta, K., Sano, K., Umezaki, T., Koda, H., Suzuki,
R., Tominaga, K., Ochi, M., Konishi, H., et al.: Universal encoding of pan-cancer
histology by deep texture representations. Cell Rep. 38(9) (2022)

17. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Adv. Neural Inform. Process.
Syst. pp. 6405–6416 (2017)

18. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. In: Adv. Neural Inform. Process.
Syst. pp. 7167–7177 (2018)

19. Linmans, J., Elfwing, S., van der Laak, J., Litjens, G.: Predictive uncertainty es-
timation for out-of-distribution detection in digital pathology. Med. Image Anal.
83, 102655 (2023)

20. Liu, X., Lochman, Y., Zach, C.: Gen: Pushing the limits of softmax-based out-of-
distribution detection. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 23946–
23955 (2023)

21. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: IEEE Conf.
Comput. Vis. Pattern Recog. pp. 10012–10022 (2021)

22. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 11976–11986 (2022)

23. Malinin, A., Mlodozeniec, B., Gales, M.: Ensemble distribution distillation. In: Int.
Conf. Learn. Represent. (2019)

24. Pinto, F., Torr, P.H., K. Dokania, P.: An impartial take to the cnn vs transformer
robustness contest. In: Eur. Conf. Comput. Vis. pp. 466–480 (2022)



Are We Ready for OOD Detection in DP 11

25. Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G.,
Askell, A., Mishkin, P., Clark, J., et al.: Learning transferable visual models from
natural language supervision. In: Int. Conf. Mach. Learn. pp. 8748–8763 (2021)

26. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: A dataset for breast cancer
histopathological image classification. IEEE Trans. Biomed. Eng. 63(7), 1455–1462
(2015)

27. Sun, Y., Guo, C., Li, Y.: React: out-of-distribution detection with rectified activa-
tions. In: Adv. Neural Inform. Process. Syst. pp. 144–157 (2021)

28. Sun, Y., Ming, Y., Zhu, X., Li, Y.: Out-of-distribution detection with deep nearest
neighbors. In: Int. Conf. Mach. Learn. pp. 20827–20840 (2022)

29. Thagaard, J., Hauberg, S., van der Vegt, B., Ebstrup, T., Hansen, J.D., Dahl, A.B.:
Can you trust predictive uncertainty under real dataset shifts in digital pathology?
In: Med. Image Comput. Comput. Assist. Interv. pp. 824–833 (2020)

30. Ulmer, D., Cinà, G.: Know your limits: Uncertainty estimation with relu classifiers
fails at reliable ood detection. In: Uncertain. Artif. Intell. pp. 1766–1776 (2021)

31. Wang, H., Li, Z., Feng, L., Zhang, W.: Vim: Out-of-distribution with virtual-logit
matching. In: IEEE Conf. Comput. Vis. Pattern Recog. pp. 4921–4930 (2022)

32. Wimmer, L., Sale, Y., Hofman, P., Bischl, B., Hüllermeier, E.: Quantifying aleatoric
and epistemic uncertainty in machine learning: Are conditional entropy and mu-
tual information appropriate measures? In: Uncertain. Artif. Intell. pp. 2282–2292
(2023)

33. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised
learning via redundancy reduction. In: Int. Conf. Mach. Learn. pp. 12310–12320
(2021)

34. Zhang, J., Yang, J., Wang, P., Wang, H., Lin, Y., Zhang, H., Sun, Y., Du, X., Zhou,
K., Zhang, W., et al.: Openood v1. 5: Enhanced benchmark for out-of-distribution
detection. In: Adv. Neural Inform. Process. Syst. Worksh. (2023)

35. Zhang, S., Xu, Y., Usuyama, N., Bagga, J., Tinn, R., Preston, S., Rao, R., Wei, M.,
Valluri, N., Wong, C., et al.: Large-scale domain-specific pretraining for biomedical
vision-language processing. arXiv (2023)

36. Zhang, Y., Sun, Y., Li, H., Zheng, S., Zhu, C., Yang, L.: Benchmarking the ro-
bustness of deep neural networks to common corruptions in digital pathology. In:
Med. Image Comput. Comput. Assist. Interv. pp. 242–252 (2022)


	Are We Ready for Out-of-DistributionDetection in Digital Pathology?

