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Abstract. Many anatomical structures can be described by surface or
volume meshes. Machine learning is a promising tool to extract infor-
mation from these 3D models. However, high-fidelity meshes often con-
tain hundreds of thousands of vertices, which creates unique challenges
in building deep neural network architectures. Furthermore, patient-
specific meshes may not be canonically aligned which limits the gen-
eralisation of machine learning algorithms. We propose LaB-GATr, a
transfomer neural network with geometric tokenisation that can effec-
tively learn with large-scale (bio-)medical surface and volume meshes
through sequence compression and interpolation. Our method extends
the recently proposed geometric algebra transformer (GATr) and thus
respects all Euclidean symmetries, i.e. rotation, translation and reflec-
tion, effectively mitigating the problem of canonical alignment between
patients. LaB-GATr achieves state-of-the-art results on three tasks in
cardiovascular hemodynamics modelling and neurodevelopmental phe-
notype prediction, featuring meshes of up to 200,000 vertices. Our re-
sults demonstrate that LaB-GATr is a powerful architecture for learning
with high-fidelity meshes which has the potential to enable interesting
downstream applications. Our implementation is publicly available. ∗†

Keywords: Deep learning · Attention models · Cardiovascular hemo-
dynamics · Neuroimaging · Geometric algebra.

1 Introduction

Deep neural networks can leverage biomedical data to uncover previously un-
known cause-and-effect relations [28] and enable novel ways of medical diagnosis
and treatment [15,21]. There has been active research into using deep neural
networks for biomedical modelling, such as cardiovascular biomechanics esti-
mation [2] and neuroimage analysis based on the cortical surface [29]. These
applications feature 3D mesh representations of patient anatomy. Depending on
the downstream application, 3D meshes either discretise the surface of an organ

∗Equal contribution.
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or vessel with, e.g., triangles, or the interior with, e.g., tetrahedra. Graph neural
networks (GNN) have gained traction in the context of learning with 3D meshes
due to their direct applicability, flexibility regarding mesh size, and good perfor-
mance on several benchmarks [9,23,25]. However, GNNs are known to suffer from
over-squashing, i.e. the loss of accuracy when compressing exponentially grow-
ing information into fixed-sized channels when propagating messages on long
paths [1]. This makes them inefficient at accumulating large enough receptive
fields, capable of learning global interactions across meshes. PointNet++ [17] can
circumvent this issue to some extent via pooling to coarser surrogate graphs, but
this requires problem-specific hyperparameter setup and might still fail around
bottlenecks. In contrast, the transformer architecture [27], treats its input as a
sequence of tokens (or patches) and models all pair-wise interactions, thus ag-
gregating global context after a single layer. In medical imaging, transformers
have been successfully applied in the context of, e.g., semantic segmentation of
2D histopathology images [12] and 3D brain tumor magnetic resonance images
(MRI) [10]. Nevertheless, applications to 3D biomedical meshes remain scarce
due to the difficulty of finding a unified framework that addresses their sheer
size, commonly in the hundreds of thousands of vertices. Dahan et al. [6,5] ad-
dressed this by aligning 3D cortical surface meshes across subjects via morphing
to an icosphere, which allows for segmentation into coarser triangular patches.

The recently proposed geometric algebra transformer (GATr) [4] has achieved
state-of-the-art accuracy on several geometric tasks, largely due to the incorpo-
ration of task-specific symmetries (SE(3)-equivariance) and modelling of inter-
actions via geometric algebra.∗ Even though GATr uses memory-efficient atten-
tion [18] with linear complexity, large 3D meshes still cause it to exceed GPU
memory during training. In the context of graph transformers, the common
bottleneck of GPU memory has been addressed by (1) sparse, local attention
mechanisms together with expander graph rewiring [7,22], as well as (2) vertex
clustering together with learned graph pooling and upsampling [11,14].

In this work, we scale GATr to large-scale biomedical (LaB-GATr) surface
and volume meshes. Since each of these meshes discretises a continuous shape,
mesh connectivity should be treated as an artefact, not a feature. Thus, we opt
for a vertex clustering approach to make self-attention tractable. We derive a
general-purpose tokenisation algorithm and interpolation method with learned
feature representations in geometric algebra space, which retains all symmetries
of GATr as well as the original mesh resolution, while decreasing the number of
active tokens used in self-attention. We demonstrate the efficacy of our method
on three tasks involving biomedical meshes. LaB-GATr sets a new state-of-the-
art in prediction of blood velocity in high-fidelity, synthetic coronary artery
meshes [23] which would exceed 48 GB of VRAM when using GATr with the
same number of parameters. Furthermore, Lab-GATr excels at phenotype pre-
diction of cortical surfaces from the Developing Human Connectome Project
(dHCP) [8], setting a new state-of-the-art in postmenstrual age (PMA) estima-
tion without morphing the cortical surface mesh to an icosphere. We provide a

∗We refer the interested reader to [3,20,19].
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Fig. 1. LaB-GATr takes input features in the form of multivectors, which are con-
structed by embedding, e.g., mesh vertices as points and surface normal vectors as
planes (see Section 2.2). In the tokenisation module, the features are pooled to a coarse
subset of mesh vertices via message passing (see Section 2.4). The tokenisation allows
control over the number of tokens which are processed by the GATr module. Down-
stream, the interpolation module lifts the tokenisation back to original mesh resolution
(see Section 2.4). An optional (∗) class token is appended to the token sequence for
mesh-level output. Subsequently, scalar or vector-valued output features are extracted.

modular implementation of Lab-GATr and an interface with which the geometric
algebra back-end can be treated as black box.

2 Methods

Fig. 1 provides an overview of our method. We extend GATr by geometric tokeni-
sation for scaling to high-fidelity meshes. In the following, we discuss background
on geometric algebra and transformers before introducing our contribution.

2.1 Geometric algebra

GATr is built on the geometric algebraG(3, 0, 1) which uses projective geometry:
a fourth coordinate is appended to 3D space, so translation can be expressed as
linear maps. At the core of geometric algebra lies the introduction of an associa-
tive (but not commutative) geometric product of vectors y, z, simply denoted as
yz. Given a 4D orthogonal basis {ei}i, it holds that e0e0 = 0, eiei = 1 (i 6= 0),
and eiej = −ejei (i 6= j). All possible, linearly independent geometric products
span a 16-dimensional vector space of multivectors x ∈ G(3, 0, 1):

x = (xs, x0, x1, x2, x3︸ ︷︷ ︸
vectors

, x01, x02, x03, x12, x13, x23︸ ︷︷ ︸
bivectors

, x012, x013, x023, x123︸ ︷︷ ︸
trivectors

, x0123) (1)

which can represent geometric quantities like points and planes.
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Table 1. Embedding of some common geometric objects as x ∈ G(3, 0, 1). See (1)
for the 16 multivector components. Other multivector components remain zero. In
geometric algebra, geometric operations can be multivectors just like geometric objects.

Geometric object / operation Multivector mapping

Scalar s ∈ R xs = s
Plane with normal ν ∈ R3 and offset δ ∈ R (x0, x1, x2, x3) = (δ, ν)
Point ρ ∈ R3 (x012, x013, x023, x123) = (ρ, 1)

Translation τ ∈ R3 (xs, x01, x02, x03) = (1, 1
2
τ)

2.2 Embedding meshes in G(3, 0, 1)

Consider an arbitrary surface or volume mesh consisting of n vertices. For each
vertex, we construct a d-dimensional positional encoding which describes its
unique geometric properties within this mesh. Each positional encoding is com-
posed of a set of c geometric objects, e.g. the surface normal vector (for surface
meshes) or the (scalar) distance to the surface (for volume meshes). Table 1 pro-
vides a look-up on how to embed relevant geometric objects, such as points and
planes, as multivectors x ∈ G(3, 0, 1) (see Fig. 1a). Consequently, we describe
each mesh by a tensor X(0) ∈ Rn×d with d = c · 16.

2.3 Geometric algebra transformers

Given a tensor of input features X(l), we define transformer blocks as follows:

A(l) = X(l) + ξ

(
Concat

h
Softmax

(
qh(X

(l))kh(X
(l))T√

d

)
vh(X

(l))

)
X(l+1) = A(l) +MLP(A(l)).

As is common practice, qh, kh, vh : Rn×d → Rn×d consist of layer normalisa-
tion composed with learned linear maps. Multi-head self-attention [27] over
heads indexed by h is implemented via concatenation followed by a learned
linear map ξ. GATr [4] introduced layer normalisation, linear and nonlinear
maps G(3, 0, 1)n×c → G(3, 0, 1)n×c, and gated activation functions which can
be used to construct ξ, qh, kv, vh, and MLP in geometric algebra. GATr blocks
are equivariant under rotations, translations and reflections ρ ∈ E(3) of the input
geometry encoded in X(l), i.e. they map ρX(l) 7→ ρX(l+1).

2.4 Learned, geometric tokenisation

In the following, we introduce tokenisation layers for large surface and volume
meshes, allowing us to compress the token sequence for the transformer blocks.
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Pooling From the point cloud Pfine consisting of the n mesh vertices, we com-
pute a subset of points Pcoarse via farthest point sampling. We partition the
mesh vertices into tokens by assigning each p ∈ Pcoarse the (disjoint) cluster of
closest points in Pfine (see Fig. 1b):

C(p) = {v ∈ Pfine | p = arg min
q∈Pcoarse

‖v − q‖2}.

This means that each point in Pfine is clustered with the point in Pcoarse to
which it is the closest. Define ncoarse = |Pcoarse|. Given a tensor of input features
X ∈ Rn×d, we perform learned message passing within these clusters (see Fig. 1c)
as follows:

mv→p = MLP(X(0)|v, p− v) (message fromPfine toPcoarse)

X(1)|p =
1

|C(p)|
∑

v∈C(p)

mv→p (aggregation ofX(1) ∈ Rncoarse×d)

where X|q denotes the row of X corresponding to point q. This layer maps
Rn×d → Rncoarse×d with ncoarse < n. Within this framework, we can embed p−v
as translation (see Table 1) and use the multilayer perceptron (MLP) introduced
by [4] to reduce the number of tokens in a way that is fully compatible with GATr.
In particular, this layer respects all symmetries of G(3, 0, 1).

Interpolation Given a tensor X(l) ∈ Rncoarse×d we define learned interpolation
to the original mesh resolution Y ∈ Rn×d as follows:

X(l+1)|v =

∑
p λp,v X

(l)|p∑
p λp,v

, λp,v :=
1

‖p− v‖22 + ε
,

Y = MLP(X(l+1), X(0))

where for each v ∈ Pfine we sum over the three (four) closest points p ∈ Pcoarse for
surface (volume) meshes (see Fig. 1d) and ε is a small constant. This layer lifts
the tokenisation and ensures neural-network output in original mesh resolution.
The interpolation provably behaves as expected in G(3, 0, 1) (see appendix)
and by using the MLP introduced by [4] this layer respects all symmetries of
G(3, 0, 1).

2.5 Neural network architecture

LaB-GATr is composed of geometric algebra embedding, tokenisation module,
GATr module, and interpolation module followed by feature extraction (see
Fig. 1). We embed the input mesh in G(3, 0, 1) (see Section 2.2) based on an
application-specific set of geometric descriptors. The embedding X(0) ∈ Rn×d

is pooled (see Section 2.4) and the resulting ncoarse tokens are fed into a GATr
module. For mesh-level tasks, we append a global class token which we embed
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Fig. 2. Qualitative results of cardiovascular hemodynamics estimation on test-split
arteries. Left: (top) surface and (bottom) volume mesh. Middle: (top) wall shear stress
and (bottom) velocity field, via computational fluid dynamics (CFD). Right: LaB-GATr
prediction.

as the mean of the ncoarse tokens. For vertex-level tasks, the m output tokens
of the transformer are interpolated (see Section 2.4) back to the original mesh
resolution. For classification tasks (like segmentation), Softmax can be used over
the channel dimension at the mesh- or vertex-level output.

3 Experiments and results

We evaluate LaB-GATr on three tasks previously explored with GNNs and trans-
formers. Since all of these are regression tasks, we train LaB-GATr under L1 loss
using the Adam optimiser [13] and learning rate 3e−4 with exponential decay on
Nvidia L40 (48 GB) GPUs. We use the same number of channels and attention
heads throughout all experiments, leading to around 320k trainable parameters.

3.1 Coronary artery models

Surface-based WSS estimation The publicly available dataset [25] consists
of 2,000 synthetic, coronary artery surface meshes (around 7,000 vertices) with
simulated, steady-state wall shear stress (WSS) vectors. We chose ncoarse = 0.1·n
in the tokenisation (see Section 2.4) and embed vertex positions as points (see
Table 1), surface normal vectors as oriented planes, and geodesic distances to the
artery inlet as scalars. The GATr back-end (see Section 2.5) was set up identical
to [4]. We trained LaB-GATr on a single GPU for 4,000 epochs (58 s

epoch ) with
batch size 8 on an 1600:200:200 split of the dataset. Fig. 2 shows an example of
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Table 2. Comparison of LaB-GATr with state-of-the-art baselines. For WSS and hemo-
dynamics estimation, we report mean ε (lower is better) across the test set. For PMA
estimation, some of the referenced works report lowest and some average MAE across
three training runs. We report lowest MAE in brackets where applicable.

Domain Dataset Model Disparity Metric
(average) (lowest)

Cardiovascular
WSS [25]

GEM-CNN [24] 7.8

ε [%]

GATr [4] 5.5
LaB-GATr 5.5∗

LaB-GATr1 7.0
LaB-GATr2 12.3

Velocity [23] SEGNN [23] 7.4
LaB-GATr 3.3

Neuroimaging PMA [8]
(native)

SiT [6] – (0.68)

MAE [weeks]MS-SiT [5] 0.59 –
[26] – (0.54)
LaB-GATr 0.54 (0.52)

∗with 10-fold compression 1static pooling module 2static interpolation module

LaB-GATr prediction on a test-split mesh. Table 2 shows approximation error
ε [24,4] of LaB-GATr compared to the baselines. LaB-GATr matches GATr’s
accuracy ε = 5.5% (standard deviation was ±2.0% over 200 test cases) despite its
10-fold compression of the token sequence. Ablation of the learnable parameters
of the pooling and interpolation module reveals that learned interpolation plays
a bigger role in performance than learned pooling.

Volume-based velocity field estimation The publicly available dataset [23]
consists of 2,000 synthetic, bifurcating coronary artery volume meshes (around
175,000 vertices) with simulated, steady-state velocity vectors. We chose ncoarse =
0.01 · n for the tokenisation and embed vertex positions as points, directions to
the artery inlet, outlets, and wall as oriented planes, and distances to the artery
inlet, outlets, and wall as scalars. The size of these volume meshes caused GATr
to exceed memory of an Nvidia L40 (48 GB) GPU. Leveraging our tokenisation
enabled training LaB-GATr with batch size 1. We trained LaB-GATr on four
GPUs in parallel for 300 epochs (10:24 min

epoch ) on an 1600:200:200 split of the
dataset. Fig. 2 shows an example of LaB-GATr prediction on a test-split mesh.
Table 2 compares LaB-GATr to [23]. LaB-GATr sets a new state-of-the-art for
this dataset with ε = 3.3% (standard deviation was ±4.4% over 200 test cases)
compared to the previous 7.4%.

3.2 Postmenstrual age prediction from the cortical surface

The publicly available third release of dHCP [8] consists of 530 newborns’ cortical
surface meshes (81,924 vertices each) which are symmetric across hemispheres.
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Fig. 3. Postmenstrual age (PMA) prediction (values in weeks) on test-split subjects.
LaB-GATr predictions based on the newborn’s cortical surface correlated well with the
reference values.

We estimate the subjects’ postmenstrual age (PMA) at the time of scan. We
chose ncoarse = 0.024 · n for the tokenisation and embed vertex positions as
points, surface normal vectors as oriented planes, the reflection planes between
symmetric vertices as oriented planes, and myelination, curvature, cortical thick-
ness, and sulcal depth as scalars. Since we observed quick convergence on the
validation split, we trained LaB-GATr on a single GPU for only 200 epochs
(1:38 min

epoch ) with batch size 4 on the 423:53:54 splits used in [5]. Figure 3 shows
a Bland-Altman plot and the cortical surface of two subjects, indicating good
accuracy. Table 2 shows mean absolute error (MAE) and comparison to the
baselines. In contrast to all baselines, LaB-GATr runs directly on the cortical
surface mesh without morphing to a sphere. LaB-GATr sets a new state-of-the-
art in PMA estimation on "native space" [9] with average MAE = 0.54 weeks
(standard deviation was ±0.39 weeks over 54 test cases times three runs).

4 Discussion and conclusion

In this work, we propose LaB-GATr, a general-purpose geometric algebra trans-
former for large-scale surface and volume meshes, often found in biomedical
engineering. We extend GATr by learned tokenisation and interpolation in geo-
metric algebra. Our method can be understood as a thin PointNet++ [17] wrap-
per which is adapted to projective geometric algebra. Through the self-attention
mechanism, LaB-GATr models global interactions within the mesh, while avoid-
ing the over-squashing phenomenon exhibited by GNNs. Notably, LaB-GATr is
equivariant to rotations, translations, and reflections of the input mesh, thus cir-
cumventing the problem of cortical surface alignment. In our experiments, LaB-
GATr matched the performance of GATr [4] on the same dataset, suggesting
near loss-less compression. Even though LaB-GATr introduces additional, train-
able parameters over GATr, we found that computing self-attention between less
tokens outweighed the parameter overhead and led to favourable training times.
Beside estimating PMA of subjects from dHCP, we also attempted gestational
age (GA) estimation with LaB-GATr. However, we observed considerably lower
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accuracy. We believe that GA can be best explained by vertex-specific biomark-
ers such as myelination, which was provided on sphericalised and subsequently
sub-sampled brains and back-projection to the cortical surface erased some of
their spatial context.

In theory, our geometric pooling scheme introduces all necessary building
blocks to define patch merging and to build a geometric version of sliding win-
dow (Swin) attention [16], which is an interesting direction for future work. We
believe that Lab-GATr has potential as general-purpose model for learning with
large (bio-)medical surface and volume meshes, enabling interesting downstream
applications. In particular, we are interested to explore brain parcellation and
attention-map-based analysis of biomedical pathology. Geometric algebra intro-
duces an inductive bias to our learning system. In future work, we aim to inves-
tigate to what extent this affects LaB-GATr predictions and derive theoretical
guarantees.
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