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Abstract. Automatic lung organ segmentation on CT images is crucial
for lung disease diagnosis. However, the unlimited voxel values and class
imbalance of lung organs can lead to false-negative/positive and leak-
age issues in advanced methods. Additionally, some slender lung organs
are easily lost during the recycled down/up-sample procedure, e.g., bron-
chioles & arterioles, causing severe discontinuity issue. Inspired by these,
this paper introduces an effective lung organ segmentation method called
Fuzzy Attention-based Border Rendering (FABR) network. Since fuzzy
logic can handle the uncertainty in feature extraction, hence the fusion of
deep networks and fuzzy sets should be a viable solution for better per-
formance. Meanwhile, unlike prior top-tier methods that operate on all
regular dense points, our FABR depicts lung organ regions as cube-trees,
focusing only on recycle-sampled border vulnerable points, rendering the
severely discontinuous, false-negative/positive organ regions with a novel
Global-Local Cube-tree Fusion (GLCF) module. All experimental result-
s, on four challenging datasets of airway & artery, demonstrate that our
method can achieve the favorable performance significantly.
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1 Introduction

Automatic lung organ segmentation is one of the challenging tasks in the field of
medical image analysis [13, 7]. Recently, this task has been extended to variously
realistic applications, e.g., robotic surgery [3], lung disease diagnosis & progno-
sis [16, 2]. To achieve a superb segmentation performance, it is vital to learn
a group of abundant and salient descriptions of lung image feature. However,
current state-of-the-art methods of lung organ segmentation still face several
challenges and aspects for improvement. Firstly, the unlimited voxel values,
multi-site imaging discrepancy and class imbalance in lung organ images can
lead to false-negative and leakage issues in prior segmentation methods, which
badly influences the critical early diagnosis of imperceptible lung diseases, e.g.,
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Fig. 1. The elaboration of Border Vulnerable Points (BVP) caused by recycled down-
sample and up-sample in the encoder-decoder backbone. Downsampling (c) gets (d),
upsampling (d) gets (e), then (f) is the absolute difference of (c) & (e). In the test
phase, (c) is binarized coarse prediction.

lung fibrosis, nodule and hypertension, etc. Secondly, the presence of numerous
slender branches, e.g., bronchioles and arterioles, which are easily lost during
the recycled down/up-sampling procedure in Fig. 1, can result in discontinu-
ity, detail loss, and coarse mask predictions. Thirdly, most CNN-based medical
segmentation methods treat all points equally during the mask rendering stage,
overlooking the vulnerability of border points in Fig. 1 (f) and the importance
of explicit border modeling. Lastly, while Vision Transformer (ViT) has shown
promise in computer vision tasks [1, 4], its quadratic operation complexity limits
its application in 3D high-resolution CT images due to hardware constraints.
Meanwhile, most specific datasets for medical image analysis are small and s-
carce due to laborious manual annotation and privacy protection, which badly
restricts the potential of transformer-based top-tier methods.

To address these limitations in this paper, we propose an effective lung organ
segmentation method called FABR. Unlike prior approaches, the method FABR
fuses fuzzy sets and deep network to diminish the uncertainty in feature repre-
sentations, decouples and depicts medical image regions as cube-trees, specifi-
cally targeting the border vulnerable points illustrated in Fig. 2. To address the
challenges of severe discontinuity and false-negative/positive bronchioles and ar-
terioles, we propose one innovative module of global-local cube-tree fusion, which
fuses the learnable global embedding and local lung organ features.

In summary, our main contributions are three-folds: (1) We seamlessly inte-
grate efficient fuzzy attention theory and transformer-like expansion/compression
convolutional network to diminish the uncertainty of lung organ feature represen-
tations; (2) We present an innovative global-local cube-tree fusion module, which
explicitly models the border vulnerable points yielded by recycled down/up-
sample for accurate lung organ segmentation; (3) We do extensive experiments
on four challenging datasets to prove the efficacy of our method.

2 Methodology

The overview of our method FABR is detailed in Fig. 2. It mainly includes t-
wo modules, i.e., fuzzy attention-based transformer-like 3D U-shaped backbone
andGlobal-Local Cube-tree Fusion (GLCF) module. The fuzzy attention-based
transformer-like backbone is inspired by the well-known ConvNeXt [19] and de-
tailed in Fig. 3, which includes a preliminary stem, sequential transformer-like



Title Suppressed Due to Excessive Length 3

regular/down/up-sample convolution blocks, a bottleneck and four efficient fuzzy
attention modules, where each convolution block is constructed by applying a
large kernel of 5 × 5 × 5 3D separable depth-wise convolution/deconvolution,
group-normalization, transformer-like architecture (i.e., embedding 4× expan-
sion/compression 1 × 1 × 1 convolution layers like FFN module of transformer
in our Fuzzy attention module) and GELU activation layer. The corresponding
layers of the same scale between the encoder and decoder are linked by the effi-
cient fuzzy attention layer. Besides, each-scale stage of the decoder is added by
the 1 × 1 × 1 3D convolution and activation layers to predict the preliminary
coarse masks of lung organ segmentation. Then, unlike the prior top-tier meth-
ods that operate on all regular dense points of the coarse masks to render the
raw prediction, the proposed GLCF module decouples and depicts the medical
image regions as cube-trees, which only focuses on the recycle-sampled BVP, and
renders the severe discontinuity as well as false-negative/positive bronchioles or
arterioles. We now elaborate the insights within the proposed method FABR for
each innovative module in the following subsections.

Fig. 2. The overview of our method FABR. FGLC: fine grain local context; CTCF:
cube-tree centroid feature; CGLC: coarse grain local context; PLGC: projected learn-
able global context. BVP detector is shown in Fig. 1. Noting the matched relationship
between top-right boxes’ and bottom-right bars’ colors.

2.1 Fuzzy Attention-based Transformer-like Backbone

One of the key challenges to design a robust lung organ segmentation module
lies in the inherent uncertainty from the organ annotations and voxel values,
e.g., bronchioles and arterioles. Various efforts have been done to enhance the
network to focus on pertinent regions. Notably, Attention U-Net [11] introduces
an attention gate to bolster accuracy by suppressing feature activations in ir-
relevant regions. However, we deem that the non-channel specifics of current
attention map assign the same “attention” coefficient to all feature points along
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Fig. 3. Our FA-based transformer-like backbone design and coarse mask generation.
FA: fuzzy attention module detailed in subsection 2.1. DW: depth-wise convolution.

the channel dimension. Specifically, given a feature map F ∈ RC×H×W×D, the
extant attention map is built as α ∈ RH×W×D, while all features along the
channel wise C share the same “importance”. This mechanism is unreliable since
the features in different channels are extracted by different convolution kernels;
therefore, we advocate the attention map to be channel-specific.

Fig. 4. The details of (a) our efficient fuzzy attention
module and (b) fuzzy attention gate (FAG) in the
subfigure (a). Zooming in for a better view.

Meanwhile, numerous s-
tudies have proved the effi-
cacy of both fuzzy logic and
neural networks in data repre-
sentation [10]. Broadly speak-
ing, neural networks strive to
diminish noise in original data
to extract meaningful feature
representations, while fuzzy
logic can derive fuzzy repre-
sentations, mitigating the o-
riginal data uncertainty. Hence, we fuse fuzzy logic with attention mechanism by
utilizing trainable Gaussian membership functions (GMFs). This fusion serves
to enhance the segmentation network’s ability to focus on pertinent regions,
concurrently diminishing uncertainty and variations in data representations.

As shown in Fig. 4(a), the proposed efficient fuzzy attention module is adopt-
ed within the skip connection, taking both feature maps {ẽl, d̃l} from the l-th en-
coder and decoder layers as inputs, which are directly yielded by the transformer-
like 4× expansion/compression layers in ConvNeXt [19] backbone, followed by
an instance normalization and a Leaky-ReLU layers for feature reconstitution.
Then, two very lightweight squeeze-excitation (SE) layers [5] are employed to fur-
ther boost the channel-specificity. Next, a voxel-wise adding operation is adopted
to fuse the information, followed by a Leaky-ReLU. Eventually, the feature rep-
resentations are fed into the FAG to generate a voxel-wise attention map, shown
in Fig. 4(b). Assume X ∈ RC×H×W×D (regardless of batch size) as the input of
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FAG. Due to the smoothness and concise notation of GMFs, learnable GMFs are
proposed to specify the deep fuzzy sets. Each feature map (with size H×W×D)
is filtered by m GMFs with the trainable centre µi,j and spread σi,j

fi,j(X,µ, σ) = e(−(Xj−µi,j)
2)/(2σ2

i,j), (1)

where i ∈ {1, . . . ,m}, j ∈ {1, . . . , C}. Our goal is to use the m membership
function to learn the “importance” of target fuzzy feature representations. Given
the trade-off of model efficiency & efficacy, m = 4 GMFs are used. Thus, we
assume that the information can be better preserved by applying the aggregation
operator “OR” while suppressing irrelevant features. Given fuzzy sets Ã and B̃,
the operator “OR” is denoted as Equ. 2(a).

fÃ∪B̃(y) = fÃ(y) ∨ fB̃(y), ∀y ∈ U, (a); fÃ∪B̃(y) = max(fÃ(y), fB̃(y)), (b) (2)

where U is the universe of information and y is the element of U. To make the
operator “OR” derivative, we modified it as Equ. 2(b). Then, the fuzzy degree
fj(X,µ, σ) ∈ ΘH×W×D, Θ ∈ [0, 1] of the j-th channel can be obtained based on
Equ. (1) and Equ. (2) as

fj(X,µ, σ) =
m∨
i=1

e

−(Xj−µi,j)
2

2σ2
i,j = max(e

−(Xj−µi,j)
2

2σ2
i,j ), (3)

where
∨

indicates the union operation. Finally, the output tensor of proposed
FAG has the same shape as input X, providing a voxel-wise attention map αF .

2.2 Global-Local Cube-tree Fusion

To the best of our knowledge, most mask render-based two-stage semantic seg-
mentation methods [6, 20] operate equally on all dense points of the coarse masks
to improve the final performance, which is unnecessary to focus much on the
already correctly predicted points. As shown in Fig. 1 and according to our s-
tatistical error analysis, most very vulnerable points occur on the object border
due to the information loss caused by down-sample operation in the encoding
process, especially for the innumerable bronchioles or arterioles in the tree-like
structures. Thus, we only focus on the border vulnerable points and propose
the novel global-local cube-tree fusion module. Specifically, (1) we “recycle” the
down-sample and up-sample operations to produce masks M l

d and M l
u, and e-

valuate the absolute differenceM l
b of them in Fig. 1 to get the border vulnerable

points Clb for the l-th layer; (2) as shown in the top-right side of Fig. 2, we build
the cube-tree of the i-th point P li ∈ Clb by extracting the local contextual fea-
tures {F li,26, F

l+1
i,27} of {26, 27}-neighbors of the {l, l+1}-th layers respectively,

which are defined as the 3× 3× 3 cube without and with centroid. For the last
layer, it is of note that we extract the 27-neighbors’ local contextual features
F l−1i,27 in the adjacent layer l-1; (3) we flatten features {F li,26, F

l+1
i,27} in the spatial

dimension and project them as well as centroid feature F li into three vectors
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{F li,fg, F li,cg, F li,ct}, which are separately related to the fine grain, coarse grain
local context information and cube-tree centroid feature; (4) global airway or
artery features from the distribution of the whole dataset is also very important,
hence, we introduce the learnable global features F̃ lg ∈ Rd to yield the projected
global features F lg, where d ∈ {32, 64, 128, 256} is the embedding dimension; (5)
we fuse the four features into F li,ff as follows:

F li,ff = λ1F
l
i,cg + λ2F

l
i,ct + λ3F

l
i,fg + λ4F

l
g, (4)

where λ1 ∼ λ4 ∈ [0, 1] are the learnable coefficients to balance the importance
of each feature; (6) we lastly add the feature F li,ff to the relative position em-
bedding features F li,pe ∈ RC1×H×W×D (retaining the topology information for
inductive bias) for the voxel-wise decoding and refined prediction. Obviously, our
proposed global-local cube-tree fusion module focuses merely on all border vul-
nerable points in Fig. 1(f) rather than all regular dense points in Fig. 1(c), which
is more related to the lung organ regions. Experimental results demonstrate the
efficacy of this design.

2.3 Network Optimization

We define a total loss jointly optimizing the model in an end-to-end manner.
The ordinary loss in Equ. 5 is employed to supervise the first stage training of
the network and produce the coarse mask predictions.

Lol =
∑4

l=1
{λloLd(P l, Y l) + λloLb(P

l, Y l)}, (5)

where Ld, Lb are Dice loss and BCE loss separately. (P l,Y l) is the prediction
and ground truth of the segmentation in the deep layer l. λlo ∈ {0.5, 0.3, 0.1, 0.1}
are balance parameters. The boundary rendering loss in Equ. 6 will supervise
the training of the second stage network and produce the fine mask predictions.

Lbrl =
∑4

l=1
{λlbrLd(P lbr, Y lbr) + λlbrLb(P

l
br, Y

l
br)}, (6)

where (P lbr,Y
l
br) is the voxel-wise border prediction and ground truth in the

deep layer l. λlbr ∈ {0.5, 0.3, 0.1, 0.1} are balance parameters. The total loss
L = Lol + Lbrl consists of the ordinary loss and boundary rendering loss.

3 Experiments

Datasets.We trained and compared our model with others using chest CT scans
from the public BAS airway dataset and PARSE22 [9] artery dataset respective-
ly. Besides, public AeroPath [14] and our in-house Lung fibrosis datasets are used
for tests. BAS includes 90 cases, 20 cases from EXACT’09 and 70 cases from
LIDC. (1) EXACT’09 [8] owns 20 cases for training and 20 cases for test (without
labels), scanning from normal conditions to lung disease patients. LIDC has 70



Title Suppressed Due to Excessive Length 7

cases with labels [12]. Lung fibrosis dataset has 25 labeled cases. AeroPath has
27 cases from patients with various pathologies. Experiment setup: We divide
BAS dataset into 72/18 cases for train/test; Studies on PARSE2022 dataset fol-
low official train/val/test split. The BAS and PARSE22 scans are both cropped
as 128×96×144 patches for training. All modules are trained by sample random
flip for 120 epochs, an initial learning rate of 10−3, an AdamW optimizer. The
whole project is realized by Pytorch & MinkowskiEngine libraries.

3.1 Qualitative analysis

(a) datasets (b) GT (c) SFCN (d) WNet (e) FANN (f) Ours

Fig. 5. Qualitative airway segmentation on BAS/Lung fibrosis datasets. GT: ground
truth. Red color: true positive. Green color: false positive. Blue color: false negative.

We qualitatively analyze our method on four challenging lung organ datasets.
In Fig. 5, SFCN [18] suffers from severe false positives and some false negatives,
especially for the big green areas of airway leakages. WNet [21] is mainly influ-
enced by false negatives on the main trachea. For the Fibrosis dataset at the
third row, it also encounters the false negative problem in the terminal bronchi-
oles moderately. FANN [10] bears the slight discontinuity issue of false negative
in the terminal bronchioles of BAS dataset, and the severe discontinuity and
airway leakage problems on the more challenging Fibrosis benchmark. Instead,
due to the above two novel modules, our method can solve the defects of false
negative, discontinuity, and leakages faced by past advanced methods. Besides,
the results on PARSE22 artery dataset in supplementary Fig. 6 also proves this.

3.2 Quantitative analysis

We accurately compare our method with other advanced models in Tables 1-2.
Evaluation metrics. The metrics are referred to method FANN [10] and

diverse, including IoU, precision, DLR, DBR, AMR, and an union metric CCFs
that concurrently evaluates the core factors of continuity & completeness for
airway & artery segmentation.
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Table 1. Comparisons on the public BAS/Lung fibrosis datasets. All values are denoted
by the percentage (%) of mean/std. Red font are the best results. DLR/DBR: detected
length/branch ratio, AMR: airway missing ratio. “?” depicts statistical significance
(with Wilcoxon signed-rank test p-value < 0.05) compared with our method.

Methods BAS
IoU ↑ Precision ↑ DLR ↑ DBR ↑ AMR ↓ CCFs ↑

nnUNet [6] 88.05/3.13 94.36/2.34? 86.84/7.00? 79.21/9.43? 6.96/4.02? 87.50/4.16?
NaviAir [17] 83.53/3.32? 86.76/4.01? 87.34/7.16? 81.01/9.52? 4.13/3.04? 85.01/3.57?
PSAR [15] 81.33/5.18 86.00/4.01 89.02/9.67 84.39/12.61 6.23/5.05 –/–
FANN [10] 87.38/4.45 91.87/3.20 92.71/7.93? 89.01/10.3? 5.22/4.50 89.69/5.54?

Ours 87.91/3.07 92.32/3.36 95.61/4.55 93.29/5.75 5.46/3.34 91.12/3.22

Methods Lung fibrosis
IoU ↑ Precision ↑ DLR ↑ DBR ↑ AMR ↓ CCFs ↑

nnUNet [6] 83.12/4.95? 93.81/3.14? 58.15/6.80? 50.18/7.93? 11.74/2.93? 69.72/5.64?
NaviAir [17] 80.79/5.33? 92.51/1.61? 59.93/14.41? 51.47/14.89? 13.45/6.45? 69.08/11.60?
PSAR [15] 72.72/6.31 78.79/8.16 72.42/10.96 65.50/12.66 9.16/3.25 –/–
FANN [10] 82.69/4.02? 89.04/3.73 78.98/8.00? 73.44/9.54? 7.95/2.37? 80.99/5.17?

Ours 83.81/4.64 89.87/4.12 85.10/8.58 80.01/10.17 7.10/2.33 84.39/5.58

Table 2. Comparison on the public validation set of PARSE22. All values are from
the official evaluation with the percentage (%) of multi-level dice coefficient.

Methods Main artery Branch artery Weighted Average
25pc ↑ 50pc ↑ 75pc ↑ mean 25pc ↑ 50pc ↑ 75pc ↑ mean 25pc ↑ 50pc ↑ 75pc ↑ mean

NaviAir [17] 84.50 88.63 89.87 87.11 55.87 62.85 66.41 61.40 63.05 67.77 70.72 66.54
nnUNet [6] 89.51 92.63 94.96 91.33 79.77 85.48 87.71 82.54 81.82 86.69 88.88 84.29
FANN [10] 90.31 92.55 94.16 91.96 75.23 81.74 84.81 80.19 78.54 84.36 86.26 82.54

Ours 91.73 92.85 94.60 92.27 79.15 85.71 87.41 83.13 81.87 87.36 88.80 84.96

Comparison on BAS dataset. In the top of Table 1, our FABR obtains the
best performance with a 91.12% CCFs, 95.61% DLR, and 93.29% DBR. NaviAir
[17] has the lowest AMR (4.13%), while it performs poorly at the metrics of
83.53% IoU, 86.76% precision and 81.01% DBR. Even if nnUNet [6] acquires the
best IoU and precision scores, its DLR and DBR metrics are unsatisfied. FANN
achieves a suboptimal performance (89.69% CCFs, 92.71% DLR, 89.01%DBR).

Comparison on fibrosis dataset.Although it’s the very challenging bench-
mark, our FABR still behaves robustly and exceeds the best method FANN by
3.4% CCFs with a total metrics of 84.39% CCFs, 83.81% IoU, 85.1% DLR,
80.01% DBR. The lowest AMR (7.1%) confirms that our method can solve the
discontinuity issue well. Other methods also behave similarly to the BAS dataset.
As seen in the two datasets, the main improvements of our method are consis-
tently at the IoU, DLR and DBR metrics, which are mainly influenced by bron-
chioles and trachea borders that are easily lost due to network down/up-samples.
Hence, our method can extract the robust bronchiole features and render border
well via the two novel modules for the accurate lung organ segmentation.

Comparison on PARSE22 dataset. This dataset is more challenging due
to more dense small bronchioles shown in supplementary Fig. 6. However, our
method still reaches the best weighted average multi-level dice of 84.96% in Table
2 compared against some advanced methods via the official evaluation. As you
can see, the remarkable gain comes from the “branch artery”, which maintains
the consistency with above airway segmentation.
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Ablation studies. To verify the efficacy of each module, we perform the
thorough ablation studies in supplementary Tables 3-5 and Figs. 7-8. In Table 3,
the 2-th row on lung fibrosis dataset with the proposed FA-based transformer-like
backbone achieves the largest 2.24%4CCFs, verifying the efficacy of fusing fuzzy
sets and deep network to diminish the uncertainty in feature representations sig-
nificantly. The 3-th row with GLCF module indicates 1.02% 4CCFs, proving
that we only need to focus much on the very hard BVP rather than all regular
dense points, which provide the most important losing information of disconti-
nuity or details in the network down-sample operation. Since we only extract the
BVP to render, it can suppress the redundant background to further solve the se-
vere class imbalance issue of foreground and background voxels. Supplementary
Table 4 evidences the efficacy of GLCF module which improves the border accu-
racy obviously by 4.72%. In Table 5, the 2-th row with FA-based transformer-like
backbone improves the DBR significantly on the terminal (1.8%), small (1.25%)
and medium (1.65%) branches except the large trachea (-1.03%), for most un-
certainty in the feature representations is from the terminal, small and medium
branches that are too thin and hard to be discerned while annotating. The 3-th
row with GLCF module realizes the significant promotion of DBR on the small
(2.02%), medium (2.02%) and large (3.09%) branches, which is consistent with
Fig. 8 to overcome the issue of detail loss in the network down-sample opera-
tion and render the BVP effectively. Supplementary Fig. 7 elucidates that our
FA-based transformer-like backbone can enhance the feature representations of
lung organs significantly.

4 Conclusion

Automated lung organ segmentation is vital to aid radiologists with lung disease
diagnosis and prognosis. However, most prior top-tier methods suffer from the
discontinuity, false-negative and leakage issues. Inspired by these, we proposed
the innovative method FABR in the paper, which has two novel modules, i.e.,
(1) Fuzzy attention-based transformer-like backbone, diminishing the uncertain-
ty of lung organ feature representations; (2) The global-local cube-tree feature
fusion module, explicitly modeling the border vulnerable points yielded by re-
cycled down/up-sample for accurate lung organ segmentation. Finally, extensive
qualitative and quantitative experiments have proven the excellent performance
of our method on four challenging lung organ segmentation datasets, involving
CT scans of lung cancer, fibrosis, and mild lung diseases.
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