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Abstract. Automatic surgical video analysis is pivotal in enhancing the
effectiveness and safety of robot-assisted minimally invasive surgery. This
study introduces a novel procedure planning task aimed at predicting
target-conditioned actions in surgical videos to achieve desired visual
goals, thereby addressing the question of “What to do to achieve a de-
sired visual goal?”. Leveraging recent advancements in deep learning,
particularly diffusion models, our work proposes the Multi-Scale Phase-
Condition Diffusion (MS-PCD) framework. This innovative approach in-
corporates multi-scale visual features into the diffusion process, condi-
tioned by phase class, to generate goal-conditioned plans. By cascad-
ing multiple diffusion models with inputs at different scales, MS-PCD
adaptively extracts fine-grained visual features, significantly enhancing
procedure planning performance in unstructured robotic surgical videos.
We establish a new benchmark for procedure planning in robotic surgi-
cal videos using the publicly available PSI-AVA dataset, demonstrating
that our method notably outperforms existing baselines on several met-
rics. Our research not only presents an innovative approach to surgical
video analysis but also opens new avenues for automation in surgical
procedures, contributing to both patient safety and surgical training.

Keywords: Robotic-Assisted Minimally Invasive Surgery · Procedure
Planning · Surgical Video Analysis · Diffusion Models

1 Introduction

Automatic surgical video analysis plays a crucial role in robot-assisted minimally
invasive surgery (RMIS), which provides surgical context awareness for surgery
monitoring [10], intraoperative assistance [17], and decision support [20], promot-
ing operation reliability and patient safety. Recent advancements in deep learn-
ing have achieved remarkable success in various surgical video analysis tasks,
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including gesture and workflow recognition [2, 7, 15], and instrument detection
and segmentation [14, 32, 33], and phase and frame prediction [8, 9, 29], driving
process automation and scene understanding in surgical procedures. However,
most of these methods focus on conducting post-hoc analysis, providing an un-
derstanding of the current surgical state to answer the question “What is hap-
pening?”, and recently there are some works proposed to prospectively predict
subsequent surgical states, answering “What is going to happen?”. Neverthe-
less, the surgical environment is visually complex and unstructured, leading to
uncertainty in future states, and subsequently influencing the goals we expect
to achieve. In our work, we take a different view, and introduce a new task as
presented in Fig 2, i.e., procedure planning in surgical videos, for predicting
target-conditioned actions to answer “What to do to achieve a desired visual
goal?”. The ability to know what actions to take to achieve the goal is very
important for automating surgical robots to plan and conduct complex surgery
tasks in clinical scenarios. Moreover, procedure planning in surgical videos can
facilitate advanced tasks, such as robot motion control, risk-based alerting, and
surgical training [11], benefiting both patients and surgeons.

In recent years, deep learning methods have been applied to address planning
from pixel observations for various domains in structured environments, includ-
ing visual object manipulation [6, 25] and VizDoom navigation [21, 30]. How-
ever, it is challenging to learn structured action spaces from unstructured real
videos. Recently, Chang et al. [3] introduce procedure planning in instructional
videos and propose the Dual Dynamics Networks (DDN) model to expedite the
latent space learning but suffers from a compounding error. Consequentially,
several works based on two-branch autoregressive models have been proposed
with different networks, including generative adversarial networks [1] and Trans-
formers [26]. However, such methods involve slow and complex autoregressive
processes, requiring visual supervision in intermediate states. Zhao et al. [31]
propose a single branch nonautoregressive model to simultaneously predict all
steps without intermediate visual observations but introduce complex training
schemes and complicated inference processes. On the other hand, the diffusion
probabilistic model [13,24] has recently achieved great success in many research
fields, such as image synthesis [4, 22], image super-resolution [16], and video
generation [12], due to its strong capability in generative modeling. Inspired by
this, Wang et al. [28] model procedure planning as a conditional sampling pro-
cess with diffusion model, achieving promising performance in instruction videos
without any intermediate supervision.

In contrast to general instruction videos, surgical videos are very visually
complex with diverse challenging conditions such as blood, reflection, and mo-
tion artifacts, limiting the planning capacity of previous methods in surgical
videos. In addition, surgical videos consist of multiple phases and steps with
a small inter-class variance and a large intra-class variance, increasing the dif-
ficulty of extracting discriminative representations on subtle differences in en-
vironments and moving instruments. On the other hand, multiple instruments
in use are moved in the narrow field of view, further making the procedure
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Fig. 1. Overview of our proposed framework. We first generate conditional phase in-
formation c by employing a phase classifier, in conjunction with the visual features of
initial observations oi and goal observations og for guiding the diffusion process. In the
denoising process, we generate multiple scales of inputs and cascade multiple diffusion
models that adaptively extract fine-grained visual features for improved performance.

planning task even more difficult in surgical videos. In our work, we propose
a novel diffusion-based framework, named Multi-Scale Phase-Condition Diffu-
sion (MS-PCD) for generating goal-conditioned plans given the current visual
observations in unstructured robotic surgical videos. Our method incorporates
multi-scale visual features into the diffusion process conditioned to phase class
by cascading multiple diffusion models with inputs at different scales, thereby
extracting more fine-grained visual features adaptively for improved procedure
planning performance in surgical videos. To the best of our knowledge, we are the
first to investigate the new but challenging procedure planning task in robotic
surgical videos. To evaluate the effectiveness of our MS-PCD, we develop a pro-
cedure planning benchmark in robotic surgical videos from the publicly available
PSI-AVA dataset and compare our method with two strong baselines. Extensive
experiments indicate that our method outperforms baselines in surgical videos
by a large margin on various metrics for procedure planning.

2 Method

In our surgical procedure planning task, given an initial visual observation oi
and a goal visual state og as shown in Fig. 2, our objective is to devise a plan
composed of action sequences π = {a1, . . . , aT }, enabling the state transforma-
tion from oi to og, where T is the horizon of planning, indicating the number of
action steps, and {oi, og} indicates two different steps in a surgical event/task,
(i.e., phase) of a surgical video. Similar to [28], we decompose surgical procedure
planning into two tasks: (1) phase recognition, which is the condition c used to
guide step prediction, learning the task-level information based on {oi, og}, and
(2) state-action transition, generating action steps a1:T conditioned on the pre-
dicted phase information. In this regard, the surgical procedure planning problem
can be expressed as p(a1:T |oi, og) =

∫
p(a1:T |oi, og, c)p(c|oi, og) dc. The overview
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of the proposed architecture is presented in Fig. 1, which we will discuss in detail
in this section.

2.1 Phase-conditioned projected diffusion

Assuming surgical procedure planning as a distribution fitting process solved
with a sampling process [28], we propose to leverage the diffusion model for learn-
ing the joint distribution of the whole action sequences. Diffusion model [4,13,19]
is a class of unconditional generative methods that address the data generation
problem by transforming a simple distribution (e.g., Gaussian distribution) into
a complex data distribution, consisting of a forward process (or diffusion pro-
cess) and a reverse process (or denoising process). Given the data distribution
p(y0), the diffusion process is a Markov Chain that incrementally adds Gaussian
noise to the input data y0 for N times:

q(yn|yn−1) = N (yn;
√

1− βnyn−1, βnI);

q(yn|y0) = N (yn;
√
αny0, (1− αn)I),

(1)

where βn is the Gaussian noise ratio at step n, αn =
∏n

s=1(1−βs) represents the
cumulative effect of noise addition up to step n. The reverse process is modeled
as:

p(yn−1|yn) = N (yn−1; ϵθ(yn, t), σ
2
nI), (2)

where σ2
n = βn, ϵθ is trained by a learnable model through an L2 loss, which

can be used to transform noise into data like y0 after training. Different from
the standard diffusion model without guidance for data generation, the distri-
bution fitting process in procedure planning requires the given observations and
phase class predicted from the first stage. In this regard, we concatenate (1)
visual observations (oi, og), (2) the predicted phase class (c) and (3) candidate
action sequence a1:T , forming our model input y = [(oi, og), c, a1:T ], and employ
the condition project scheme with a weight matrix w = 10 to emphasize the
importance of given visual observations, expressed as: c1 c2 cT

wa1 a2 . . . waT
o1 o2 oT

 →

 c c c
wa1 a2 . . . waT
oi 0 og

 , (3)

where ci, ai and oi, represent the ith phase class, predicted action logits and
observation dimensions in y, respectively. The projection operation Proj() can
force the observations and condition dimensions not to change during training
and inference. It is well noted that the predicted phase class at the first stage is
preliminary but important, especially for visually complex surgical videos. In the
regard, we employ the Vision Transformer (ViT) architecture [5] for improving
the phase recognition (PR) performance, which outperforms the MLP architec-
ture [28] by 4% in PR accuracy. For the second stage, we follow the basic training
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strategy for the diffusion model, but project phases class and observations to the
initial values, our training loss is formatted as:

Ldiff =
N∑

n=1

(ϵθ (yn, n)− y0)
2
. (4)

2.2 Multi-scale cascaded diffusion

In the context of surgical videos, diffusion models leverage conditional informa-
tion and incorporate noise as inputs, showcasing their robustness to noisy envi-
ronments. However, the small variance among different visual cues and instru-
ment motions within the constrained field of view presents a notable challenge to
the diffusion process (Visualizations are shown in Supplementary Material). To
overcome these issues, we propose a multi-scale cascaded diffusion process. This
approach adaptively selects the optimal input scale from multiple predefined
scales (See Supplementary Material for examples of predefined scales), enabling
the extraction of more refined visual features, which, in turn, enhances procedure
planning performance.

Let S denote the set of predefined scales, with si representing the ith scale.
During the training phase, the process initiates with a pair of initial and goal
observations, {oi, og}, where the visual embedding, v, is computed as the mean
of the visual features extracted from images cropped at predefined scales. For
an input image I, the image cropped at scale si is represented as Isi . The visual
embedding v for a given epoch is thus defined by:

v =
1

|S|

|S|∑
i=1

F (Isi), (5)

where F symbolizes the image encoder. We augment the initial model input
by concatenating S with the observation pair and the action sequence a1:T ,
introducing a scale selection branch to the diffusion model. As a result, the action
representation in Eq. (3) becomes the concatenation of action sequence and scale
selection vector, i.e., replacing ai with ai ⊕ si. In the initial 50 steps of each
200-step epoch, the scale si is selected randomly from S. Subsequently, the scale
selection branch predicts the most suitable scale for cropping. A second diffusion
model is then cascaded, processing visual embeddings from images cropped at
the predicted optimal scale. Given the lack of concrete ground truth for optimal
scale selection, we optimize the scale selection branch indirectly through the
overall model objective, avoiding the necessity for additional loss functions and
hyperparameters. During inference, the model calculates the visual embedding v
using the predefined scales as described. Once trained, it employs Dws (diffusion
branch for window scale selection)to determine the optimal cropping window
W ∗, generating a new visual embedding v′ through:

v′ = F (IW∗). (6)
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These refined embeddings v′ are subsequently fed into the diffusion model for
predicting the final sequence of steps. To ensure consistency, the scale selection
for both initial and goal observations remains unchanged, reflecting the minimal
variation in the active region between these states. Through iterative refinement,
involving repeated application of the multi-scale selection and diffusion model,
our method adaptively selects the most appropriate scale for the task, thereby
improving the accuracy of step sequence predictions.

3 Experiments and Results

Dataset and evaluation metrics. We use the Phase, Step, Instrument, and
Atomic Visual Action recognition (PSI-AVA) dataset [27], a public dataset op-
erated with Da Vinci SI3000 Surgical system, consisting of around 20.45 hours
of the surgical procedure and 73, 618 keyframes with annotations at the phase
and step level, in which 2, 238 keyframes are selected for instrument and atomic
action annotations by sampling every 35 seconds. Regarding the experimental
framework of procedure planning, we extract all step sequences {ai, . . . , ai+1−T }
with a horizon of planning T from the PSI-AVA dataset, forming sub-tasks with
T steps using a sliding window approach [28] (More visual explanations are
shown in Supplementary Material).. We set T = 4 in our experiments. For each
sub-task, the first step and the last step are selected as the initial observation
oi and goal visual state og, respectively. We use phase categories as task-level
information to guide procedure planning, and the steps in each sub-task belong
to the same phase. Finally, we include 10 phases and 20 steps in our evaluation.

To evaluate various methods, we employ three commonly used metrics for
procedure planning, i.e., Success Rate (SR), mean Accuracy (mAcc), and mean
Intersection over Union (mIoU) [28]. SR considers a plan successful only if all
predicted action steps match the ground truth sequence. mACC assesses the
correctness of predicted actions at each time step by comparing them with the
actions in the ground truth at the same time step. mIoU quantifies the overlap
between predicted action steps and ground truth by computing IoU on each
individual sequence. In addition, we report the accuracy to evaluate the re-
sults for step recognition, Acc-Step for short. All metrics are presented with the
mean performance and the variations over multiple inferences, represented as
mean(±std).
Baselines. To evaluate the effectiveness of our model in learning plans from
surgical videos, we establish strong baselines by employing two state-of-the-art
(SOTA) methods designed for procedure planning in instructional Videos i.e.,
PlaTe [26] and PDPP [28]. PlaTe employs Transformer modules with intermedi-
ate visual states, while PDPP uses the diffusion model to model the distribution
of sequences of intermediate actions without visual cues. Moreover, we include
the TAPIR model [27] for performance comparison on step recognition.
Implementation details. Following [19, 28], we use the cosine noise schedule
and the basic U-Net [23] as the learnable model for diffusion. For training, we
optimize our model with Adam using a learning rate of 3e− 4 over 100 epochs.
The number of training steps per epoch is N = 200, and the number of diffusion
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Table 1. Performance comparison between our method and state-of-the-art ap-
proaches. All results represent the average values obtained from two folds of the PSI-
AVA dataset. Values in bracket indicate std of five-fold validation. S is short for scale;
S = n means that our scale selection mechanism selects from n predefined scales.

Method SR (%)↑ mAcc(%)↑ mIOU (%)↑ Acc-Step (%)↑
PlaTe [26] 14.17(±0.07) 23.65(±0.11) 59.32(±0.35) 30.08(±0.18)
PDPP [28] 24.88(±0.14) 36.59(±0.21) 59.44(±0.41) 43.28(±0.35)
TAPIR [27] - - - 39.43(±0.04)

Ours (S=1) 25.04(±0.15) 36.82(±0.25) 59.60(±0.36) 41.38(±0.35)
Ours (S=2) 25.44(±0.18) 37.02(±0.25) 59.66(±0.40) 41.15(±0.36)
Ours (S=3) 25.90(±0.15) 37.24(±0.23) 59.78(±0.38) 42.53(±0.40)
Ours (S=4) 26.76(±0.17) 39.86(±0.23) 64.58(±0.40) 46.47(±0.39)
Ours (S=5) 27.05(±0.19) 39.74(±0.26) 64.81(±0.43) 46.20(±0.37)

Fig. 2. Visualization of surgical plans produced by our model and PDPP. GT indicates
‘Ground Truth’.

steps per training step is 200. We extract action features of 512-dimensional
using the encoder trained on the HowTo100M [18] dataset as the input of our
diffusion model.

Fig. 3. Boxplot of ablation results with different scales. ‘s1’ to ‘s5’ refer to predefined
image scales.

Comparison with other approaches. We present the results of different
methods in Table 1. From the table, we can observe that PDPP surpasses
Transformer-based PlaTe by a large margin in most metrics, especially for the
success rate, which demonstrates the effectiveness of the diffusion model in proce-
dure planning in surgical videos. Notably, our model with different scales achieves
better procedure planning performance than other methods by a significant mar-
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gin, and outperforms PDPP by 2.17% in SR, 3.27% in mAcc, and 5.37% on mIoU,
showing the effectiveness of the proposed method for the task. It is noted that
our performance increases dramatically with scales up to 4 in our multi-scale
cascaded diffusion process. More specifically, in the procedure planning task (as-
sessed by the first four metrics), adding the fourth scale option contributes to
an increase of 0.86% in SR, a 2.62% improvement in mAcc, and a 4.8% rise in
mIOU. However, the involvement of the fifth scale shows only marginal gains in
some metrics, leading to a plateau in performance improvement. This indicates
that while multiple scales can enhance the model performance in capturing fine-
grained features for the task, the burden on the scale selection branch would be
increased, and affect the selection process, potentially leading to a performance
drop on procedure planning. Consequently, we set S = 5 in our experiments.

For step recognition, we can see that our method (S=4) outperforms TAPIR
by 7% in Acc-Step, suggesting that our method can significantly enhance step
recognition performance when aligning the input formation with TAPIR. Fur-
thermore, we show some qualitative results of PDPP and our method in Fig. 2
with more visual comparisons shown in Supplementary Material. From the fig-
ure, we can perceive that our model can generate reasonable and diverse plans
with the same initial and goal observations, while it is difficult for PDPP to
capture the subtle changes in visual cues of surgical videos, leading to failure in
procedure planning.
Ablation study. To further demonstrate the efficacy of our proposed multi-
scale cascaded diffusion process, we conduct experiments utilizing each prede-
fined scale individually within the diffusion model, as depicted in Fig. 3. The
results reveal that employing the 4th scale can yield the best performance, indi-
cating that this scale possesses richer fine-grained features in most of samples to
the procedure planning task. When involving the multi-scale selection with our
proposed method, better performance can be obtained, which demonstrates the
effectiveness of the proposed method in enhancing action sequence prediction in
surgical videos.

4 Conclusions
Our investigation into procedure planning in robotic surgical videos introduces
the innovative Multi-Scale Phase-Condition Diffusion (MS-PCD) framework,
marking a significant advancement in the field of automatic surgical video anal-
ysis. By innovatively applying diffusion models conditioned on multi-scale vi-
sual features and phase classes, our approach adeptly navigates the complexities
of the surgical environment, demonstrating superior performance over existing
methodologies. The success of MS-PCD in generating precise, goal-conditioned
plans underscores the potential of deep learning in transforming surgical planning
and execution. Moreover, the establishment of a new benchmark for evaluating
procedure planning underscores the critical need for continued exploration and
innovation in this domain.This endeavor not only promises to improve surgical
outcomes and patient safety but also to enrich the training and decision-making
capabilities of surgeons, heralding a new era of precision and reliability in robot-
assisted surgeries.
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