
MetaStain: Stain-generalizable Meta-learning for
Cell Segmentation and Classification

with Limited Exemplars

Aishik Konwer1 and Prateek Prasanna2

1 Department of Computer Science, Stony Brook University, NY, USA
2 Department of Biomedical Informatics, Stony Brook University, NY, USA

akonwer@cs.stonybrook.edu, prateek.prasanna@stonybrook.edu

Abstract. Deep learning models excel when evaluated on test data that
share similar attributes and/or distribution with the training data. How-
ever, their ability to generalize may suffer when there are discrepan-
cies in distributions between the training and testing data i.e. domain
shift. In this work, we utilize meta-learning to introduce MetaStain, a
stain-generalizable representation learning framework that performs cell
segmentation and classification in histopathology images. Owing to the
designed episodical meta-learning paradigm, MetaStain can adapt to un-
seen stains and/or novel classes through finetuning even with limited an-
notated samples. We design a stain-aware triplet loss that clusters stain-
agnostic class-specific features, as well as separates intra-stain features
extracted from different classes. We also employ a consistency triplet
loss to preserve the spatial correspondence between tissues under differ-
ent stains. During test-time adaptation, a refined class weight generator
module is optionally introduced if the unseen testing data also involves
novel classes. MetaStain significantly outperforms state-of-the-art seg-
mentation and classification methods on the multi-stain MIST dataset
under various experimental settings.
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1 Introduction

In medical imaging, the application of deep learning is often challenged by their
difficulty in generalizing from one dataset to other related ones. Typically, medi-
cal images are conceptualized as points within a complex, high-dimensional, and
nonlinear manifold. The inability of algorithms to consistently perform segmen-
tation and classification tasks across different imaging techniques, patient demo-
graphics, protocols for image acquisition, and medical institutions, can largely
be attributed to notable variations in the statistical properties of datasets within
these manifold spaces - a phenomenon referred to as covariate shift [24]. Retrain-
ing deep learning models for each novel dataset to mitigate covariate shifts is not
practically feasible in many scenarios due to the lack of rich expert-annotated
training data in the novel dataset needed to re-calibrate the model parameters.
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Hence, it is critical to develop techniques that exhibit robust generalization
capabilities to new datasets unseen in the training phase, with minimal reliance
on their annotated samples. Specifically, the problem that we intend to address
here is that a model trained on multiple source domains such as Whole Slide
Images (WSI) with different Immunohistochemistry (IHC) stains (Ki67, ER,
HER2) [23] will find it difficult to adapt to a new target domain, for e.g. PR
stained slides. The strategies of domain adaptation [7] and domain generalization
[22] are designed to mitigate the effects of covariate shifts by learning domain-
invariant features across both source and target datasets. Domain adaptation
concentrates on generating a feature representation consistent across the distri-
butions of both source and target domains, which ensures an adequate level of
discriminative capability for the given task. On the other hand, domain general-
ization tackles a more complex challenge by training models across a spectrum
of source domains to derive a universally applicable feature representation that
is expected to be effective on target domains unseen during training. Domain
generalization is a variant of transfer learning that prohibits the use of any data
from the target domains during model training.

Recently, the medical vision community has delved into applying the con-
cept of domain generalization in different ways through the usage of: (1) Nine
data augmentation strategies [34] on training data to approximate the test data
distribution for heart and prostrate segmentation from US and MR images,
(2) an episodic meta-learning approach to improve brain tissue segmentation in
T1-weighted MRI images across four medical centers [4], and (3) VAEs to iden-
tify latent subspaces to achieve patient generalization for 2D cell segmentation
through domain disentanglement [14]. All the above methods have limitations:
[34] applies data augmentation on a large dataset, a scenario not always practical
in medical imaging where data may be scarce, aiming for domain generalization.
[4] relies on meta-training and meta-test sets with similar anatomical features,
which is suboptimal due to limited interactions between multiple domains. [14]
operates under the assumption that each patient represents a distinct domain
within the same medical center, potentially leading to similar statistical distri-
butions between training and test data.

In this work, we propose a domain-generalization-guided meta-learning frame-
work to perform cell segmentation and classification with limited annotated ex-
emplars for an unseen stain, given that it encounters multiple source stains in
the training stage. We employ an encoder-decoder architecture, where training
is carried out in an episodic meta-learning paradigm [20] by randomly assigning
source domains into meta-train and meta-test sets. This enables us to develop
stain-generalizable representations that can readily adapt to perform cell seg-
mentation and classification on an unseen stain with limited annotated exemplars
in the inference stage. First, shared encoders followed by masked average pool-
ing (MAP) generate prototype representations for each available class (IHC+,
IHC-, background) in the source domain training stage. A stain-class aware hard
triplet [12] loss is proposed to maximize the distance between semantic classes
within a particular stain and to minimize the distance between same-class feature
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clusters across multiple stains. A novel consistency-preserving loss is applied to
focus on the fine-grained correspondence between tissues from different stains.
Finally, finetuning is carried out on limited annotated samples of unseen target
stains at test-time adaptation. For one set of experiments, a weight generator in-
volving a Graph Attention Network (GAT) [30] is trained with support samples
to learn better discriminative decision boundaries, and generate new weights to
accommodate novel classes for the unseen stains at inference.

To summarize, our major contributions are as follows: 1) To the best of our
knowledge, we are the first to present an episodic meta-learning training strategy
in histopathology, that forces representations to be generalizable across multiple
source stains during training, thus aiding our model to adapt to unseen target
stains with limited annotated exemplars at inference, 2) We introduce stain-class
aware hard triplet losses to produce meaningful inter- and intra-class semantic
clusters and, preserve spatial consistency between tissue in different stains. 3) For
one set of experiments, during test-time adaptation, we utilize class incremental
learning through a GAT, that adjusts class weights to integrate novel classes at
inference.

Fig. 1. Illustration of the proposed framework. (a-b) Meta-training and meta-
testing are episodically performed on IHC-stained patch pairs. Each patch is accompa-
nied by corresponding IHC+, IHC-, and background masks. Stain-class pair triplet loss
is applied to the generated class prototypes. (c) At inference, the meta-trained model
is calibrated on a small set of annotated exemplars (support) from the target stain.
A weight generator is trained when the target contains novel classes. (d) Consistency
triplet loss is applied for fine-grained matching between tissues across multiple stains.

2 Methodology

We propose a stain-generalizable meta-learning framework that can attain gener-
alizable cell segmentation and classification performance over multiple histopathol-
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Algorithm 1 MetaStain Training
1: Input: Source stains S = {S1, S2, ..., Sn}, Target stain: T
2: Initialise: Initialise θ, α, β, ω
3: for iterations = 1, 2, . . . do
4: Randomly Pairwise Split 80% of source domains S into meta-train Str, and

meta-test Ste. Also, construct a cohort of co-registered stains with 20% samples
via image translation

5: Meta-train: Gradients ∇θ = H
′
θ(Str; θ)

6: Updated parameters: θ
′
←θ − α∇θ

7: Meta-test: Compute combination of Dice and weighted-CE loss with updated
parameter θ

′
as G(Ste; θ

′
)

8: Auxiliary loss: Compute stain-class pair triplet loss LT between meta-train
and meta-test and consistency preserving loss LCP (if co-registered cohort selected)

9: Final Model parameters: θ←θ − ω ∂(H(Str ;θ)+βG(Ste;θ−α∇θ))
∂θ

10: end for

ogy stains during the training stage, as well as quickly adapt to unseen stains and
classes in the inference phase with limited annotated exemplars. Our framework
consists of three sub-modules: 1) Application of meta-learning for stain general-
ization with multiple stains, 2) Stain-aware Triplet and Consistency preserving
losses for better representation learning, and 3) Test-time adaptation with lim-
ited exemplars on unseen stains. An optional weight generator is applied in one
set of experiments to accommodate, and boost the classification performance of
novel classes at inference. The overall framework is illustrated in Figure 1.

2.1 Meta-Learning for Stain Generalization

Consider two distinct data distributions: the source, denoted as S = {S1, S2, ..., Sn},
and the target, represented by T . Both distributions are associated with the cell
segmentation task and ideally should utilize identical sets of classes. However, we
also explore a complex scenario of detecting novel classes at inference through
class-incremental learning at test-time adaptation. Meta-Learning [6] aims to
optimize a unified set of parameters, symbolized by θ, through gradient de-
scent, incorporating two key learning phases: meta-training and meta-testing.
The training phase focuses solely on the source stains, S, while inference is car-
ried out on the unseen target stain T . To facilitate this, the source S is divided
into two subsets: the meta-training stains (notated as Str) and the meta-testing
domains (notated as Ste = S - Str). This division is designed to replicate the sce-
nario of shifting domains, enhancing the model’s ability to adapt to the unseen
target domain T effectively. This learning approach is detailed in Algorithm 1
and further elaborated in Figure 1.

Consider an illustrative example involving WSI stained by three different
IHC biomarkers: Ki67, ER, and PR, forming the set of source domains S. Addi-
tionally, there is another stain HER2, serving as the unseen test domain T . The
proposed approach aims to train a single model parameter θ through two opti-
mization steps. During each iteration, the images within the source stains (Ki67,
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ER, PR) are randomly divided into meta-train and meta-test subsets, each con-
sisting of images from one stain at a time. Two losses are then computed: the
first loss H is calculated using training examples from the meta-train set, and
the gradient concerning the model parameter θ is computed. The second loss G is
computed on the meta-test set using the updated parameter θ

′
= θ−α∆θ. The

rationale behind introducing the second loss during the meta-test stage is that
a boost in the model’s performance on the meta-train set should also result in
improved performance on the meta-test set. The final model parameter θ is up-
dated by computing the gradient of the weighted combination of the two losses,
H and G. Specific to our scenario, both the losses are a combination of dice loss
and weighted Cross-entropy [27]. This tuning ensures that the model performs
well on both the meta-train and meta-test domains, preventing overfitting to any
specific domain by jointly optimizing the two losses. In contrast, in a standard
setup where the model is trained directly on images from all three stains (Ki67,
ER, PR) without meta-learning, it may overfit to one domain while disregarding
others, resulting in sub-optimal performance.

2.2 Stain-aware Triplet and Consistency Preserving Losses

Stain-class pair triplet loss. To achieve effective generalization of stain infor-
mation within the embedding space, it is crucial to separate class-specific features
from the same stain into distinct semantic clusters. Thus to mitigate domain dis-
crepancies within source stains to attain desired feature clusters, we introduce
a novel stain-class pair-mining technique. This domain-aware pair mining not
only disperses intra-strain features according to class labels but also facilitates
class-specific feature clustering independent of the stain, thereby enhancing the
generalization of domain information. The two characteristics of this technique
are: 1) Different classes stained with the same biomarker are pushed apart in
latent space, and 2) A particular class is allowed to possess similar underlying
features even though stained with different biomarkers.

Unlike conventional triplets {σ, p, n} in pair-mining approaches [33], in our
strategy, p signifies the positive image feature with the same class but a distinct
stain from σ, while n represents the negative image feature with the same stain
but belongs to different class from σ. The updated triplet loss can be expressed as
follows: LT =

∑
i̸=j max(0, µT + F(σil,is , pil,js)−F(σil,is , njl,is)) , where l and

s refer to the class label and stain label respectively. F represents the Euclidean
distance between features, and µT is the margin of triplet loss.

Consistency preserving loss. The significant variability across different stains
(Ki67, ER, PR, HER2) for the same tissue structure, introduces a substantial
domain gap in cell segmentation and classification tasks, thereby escalating its
complexity. To enhance representation learning through fine-grained matching of
tissues, we employ a data augmentation strategy by shuffling patches to generate
augmented triplets. We perform image-to-image translation [23] on a fraction
(20%) of our dataset to generate co-registered WSIs from different stains. Next,
we rearrange n × n numbered sub-patches of a random stained patch WS1 and
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its corresponding co-registered pair (WS2
) from a different stain, by using a

permutation function η(·), resulting in shuffled versions W ζ
S1

= η(WS1 , ζ) and
W ζ

S2
= η(WS2 , ζ), where ζ represents a random permutation of the sequence

[1, 2, ...n2], dictating the rearrangement of image patches into W ζ
S1

or W ζ
S2

For a given co-registered patch pair from any two stains (WS1 ,WS2), the
training process aims to minimize the feature distance between a patch permu-
tation (W ζ1

S1
) and the corresponding permutation (ζ1) of its co-registered stain

patch (W ζ1
S2

), while simultaneously maximizing the distance from a different per-
mutation (W ζ2

S2
). To achieve this, we formulate a triplet training objective as:

LCP = max(0, µc +D(f
W

ζ1
S1

, f
W

ζ1
S2

)−D(f
W

ζ1
S1

, f
W

ζ2
S2

)), where µc is the margin of
triplet loss.

2.3 Test-time adaptation with optional weight generator

We handle two scenarios at the inference stage: 1) unseen target stain with known
classes, and 2) unseen target stain with novel classes. For the first scenario,
we perform test-time adaptation [16] i.e. simple finetuning on some annotated
support exemplars (5%-20%), and test on the rest of the target stain (query).
We finetune only the decoder weights while the encoder is kept frozen.

For the second more complex scenario, we train a weight generator (involving
a GAT) with some annotated support exemplars (5%-20%) and test on the rest
of the target stain (query). We design a function Gρ that takes two inputs:
weight vectors of known (Cb) and novel (Cn) classes, Xknown and Xnovel, from
the support samples passed through the frozen encoder. To facilitate information
exchange among the weight vectors of Cb+Cn classes, we employ GAT which is
well-suited for information propagation due to its invariance to the sequence of
weight vectors, allowing for the accommodation of novel classes. GAT’s shared
weights across nodes also enable it to adeptly handle a varying number of novel
classes. The input to GAT is XI = {Xknown, Xnovel} consisting of Cb+Cn weight
vectors. Each weight vector corresponds to an input of a GAT node.

GAT first calculates the relationship coefficient between each pair of nodes
through an inner product operation, followed by normalization with a softmax
function to derive attention weights. After iterative updates of the weight vectors
in the graph, the final output is the generated weight vectors for both known
and novel classes as Xnew = Gρ(XI) with XI = [Xknown;Xnovel] ∈ R(Cb+Cn)×d.

3 Experiment Design and Results

Dataset. Our experiments utilize the publicly available MIST dataset [23]. We
trained our model with 5642 HER2 patches (64 WSIs), 5153 ER, 5361 Ki67, and
5139 PR patches (56 WSIs each). DeepLIIF [8] was used to generate ground truth
cell masks and cell types synthetically (IHC+, IHC-). HoVer-Net [9] was used
to generate ground truth for H&E images (neoplastic, non-neoplastic epithelial,
inflammatory, connective, dead). In Experiment 1, we assigned each of the four
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IHC stains as the unseen one during inference. In Experiment 2, during novel
class segmentation, we reserve 4000 paired H&E stains, comprising 1000 samples
each from HER2, ER, Ki67, and PR, for the inference stage. To implement the
consistency-preserving loss, we image-translated 20% of H&E images into various
stains to create co-registered ER-PR, ER-Ki67, and PR-Ki67 patches.
Implementation Details. For all the models, we used a ResNet50 [11] as
the shared encoder in a U-Net [28] architecture. MetaStain is implemented in
PyTorch [26] with a 48 GB Nvidia Quadro RTX 8000 GPU. All patches have
dimensions of 1024 × 1024 and do not overlap. We trained with a batch size of
one. Adam optimizer [19] was used with a linear decay scheduler and an initial
learning rate of 5 × 10−3. The hyperparameters α, β, ω are set to 1. The loss
function used is the sum of Dice [2] and weighted Cross-entropy (wCE) loss.
The weights for wCE loss were 0.6 and 0.4 for IHC+ and IHC- classes. Average
dice score and accuracy metrics are used for evaluation. 10 random runs have
been conducted for experiments involving Ki67 and ER target stains. Average
and standard deviations for Dice and Accuracy are reported in supplementary.

Table 1. Comparison with SOTA for IHC+ and IHC- cell segmentation and classifica-
tion on Ki-67 and ER target stains. 5%-20% support samples are used for finetuning.

Methods Ki67 samples in inference (DSC, Acc) ER samples in inference (DSC, Acc)
5% 10% 20% 5% 10% 20%

PANet 0.65, 0.68 0.68, 0.68 0.72, 0.71 0.62, 0.65 0.64, 0.67 0.69, 0.68
HSNet 0.74, 0.70 0.77, 0.71 0.81, 0.73 0.71, 0.68 0.73, 0.70 0.78, 0.71
DCAMA 0.77, 0.74 0.81, 0.76 0.84, 0.77 0.74, 0.70 0.76, 0.72 0.79, 0.74
AAformer 0.78, 0.73 0.81, 0.75 0.83, 0.76 0.76, 0.71 0.77, 0.72 0.80, 0.73
PATNet 0.83, 0.77 0.85, 0.77 0.87, 0.79 0.81, 0.74 0.83, 0.76 0.85, 0.77
PMNet 0.81, 0.76 0.84, 0.77 0.86, 0.78 0.79, 0.73 0.80, 0.74 0.82, 0.75
MLDG-Seg 0.80, 0.72 0.82, 0.75 0.85, 0.74 0.77, 0.72 0.79, 0.72 0.81, 0.76
MetaMedSeg 0.82, 0.70 0.80, 0.71 0.83, 0.70 0.80, 0.70 0.80, 0.68 0.79, 0.72
iMAML 0.83, 0.76 0.84, 0.77 0.86, 0.80 0.79, 0.77 0.81, 0.76 0.82, 0.78
DCA-Net 0.81, 0.73 0.83, 0.75 0.84, 0.77 0.77, 0.71 0.79, 0.73 0.80, 0.76
DCAC 0.76, 0.69 0.76, 0.70 0.77, 0.72 0.73, 0.66 0.75, 0.69 0.76, 0.70
Ours 0.88, 0.84 0.90, 0.86 0.91, 0.87 0.85, 0.84 0.86, 0.84 0.88, 0.85

Experiment 1: Our framework is evaluated on unseen stain and known
2-class segmentation and classification against 3 types of methods: 1) few-shot
segmentation (PANet [31], DCAMA [29], and AAformer[32]) which employ var-
ious strategies including class prototype alignment, attention mechanisms, and
incorporating agents in transformer aiming to improve the model’s capability
to generalize across diverse classes with limited examples, 2) cross-domain few-
shot segmentation (HSNet [25], PATNet [21], PMNet [1]) that utilize multi-
level feature correlations to perform cross-domain few-shot segmentation with
minimal samples, and 3) domain generalization based segmentation methods
(MLDG-Seg [18], MetaMedSeg [5], iMAML [17]) which explore variants of meta-
learning for similar purpose. We also compare with DCA-Net [10] and DCA [13],
which achieve domain generalization through feature augmentation and domain-
invariant feature learning, rather than meta-learning. Table 1 shows consistent
improvements of MetaStain over the second-best approach by ∼4-5% in average
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Dice scores, and ∼7-9% in average accuracy for segmentation and classification
of IHC+, IHC- classes in Ki67 stained samples. It should be noted that the model
is finetuned with varying proportions (5%-20%) of Ki67 support exemplars at
inference. Our results differ statistically significantly from SOTA, as determined
by a t-test. Similar performance boosts can be observed for inference done on
ER-stained patches. MetaStain beats the second-best approaches by 3-4% dice
score in segmentation and 7-9% accuracy in cell classification when finetuned
over different proportions of ER samples at inference. Results on the PR target
stain are shown in the supplementary. MetaStain even surpasses [10, 13] in sce-
narios with 0% support samples (shown in supplementary). Qualitative results
are shown in Figure 2 and supplementary.
Experiment 2: Our framework is evaluated on unseen stain, novel 5-class
segmentation and classification with different proportions of annotated H&E
stained support samples at inference. We explore the efficacy of each proposed
component, including meta-learning (MetaL), stain-class pair loss (LT ), spatial
consistency loss (LCP ), and weight generator(Gρ). We started with two types
of vanilla methods: 1) Training and testing only with limited samples of target
stains, 2) Training with only source stains, and finetuning on limited samples
of the target domain. Both these methods performed poorly due to insufficient
quantity of data or absence of parameter tuning for adaptation to a new stain.
The inclusion of the triplet losses helps to form a better separation between intra-
stain classes and encourages similar semantics for a class across different stains.
This is reflected in the (+2-5%) boost in metrics (Table 2). Finally, Gρ helps in
significantly improving average segmentation and multi-class classification accu-
racies of combined known and novel classes for H&E stain at inference. Ablation
studies with the same variants for unseen stain known 2-class segmentation
and classification on Ki67 samples have been reported in Table 2.

Fig. 2. Segmentation results of IHC+ (red) and IHC- (blue) cells on two different
target stains (Ki67, ER). Regions with inconsistent segmentations are highlighted with
red bounding boxes.

4 Conclusion

Due to poor generalizability, deep learning models often exhibit decreased per-
formance when a domain shift exists between the training and testing data. In
this work, we develop a stain-agnostic representation learning network that can
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Table 2. Comparison with baselines for 5-class segmentation and classification in H&E
target stain. Ablation results for IHC+/IHC- segmentation and classification on Ki-67.

Methods
H&E stain in inference
(avg DSC, avg Acc)

Ki67 stain in the inference
(avg DSC, avg Acc)

5% 10% 20% 5% 10% 20%
Vanilla target 0.63, 0.45 0.64, 0.49 0.67,0.54 0.56, 0.48 0.59, 0.57 0.60, 0.61
Vanilla source 0.74, 0.59 0.76, 0.60 0.75, 0.63 0.62, 0.60 0.66, 0.63 0.71, 0.66
MetaL 0.79, 0.67 0.83, 0.69 0.84, 0.70 0.84, 0.81 0.87, 0.82 0.89, 0.83
MetaL+LT 0.83, 0.71 0.86, 0.73 0.86, 0.74 0.87, 0.82 0.89, 0.85 0.91, 0.84
MetaL+LT +LCP 0.85, 0.72 0.87, 0.74 0.88, 0.75 0.88, 0.84 0.90, 0.86 0.91, 0.87
MetaL+LT +LCP +Gρ 0.85, 0.76 0.87,0.78 0.89, 0.81 -

not only generalize to multiple IHC-stain images in training but also quickly
adapt to an unseen target stain with limited support samples. The meta-learned
representations are further enhanced via two types of triplet losses that pro-
mote contrastive learning and spatial consistency for tissues across stains. Our
method attains satisfactory multi-class segmentation and classification results
when tested on unseen IHC or H&E stained WSI patches at inference. In the
future, we will experiment with different proportions of co-registered samples
during model training and evaluate the performance of downstream tasks in-
volving cell morphology [3] and spatial arrangement analysis [15].
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