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Abstract. Despite recent advancements in Federated Learning (FL) for
medical image diagnosis, addressing data heterogeneity among clients
remains a significant challenge for practical implementation. A primary
hurdle in FL arises from the non-independent and identically distributed
(non-IID) nature of data samples across clients, which typically results in
a decline in the performance of the aggregated global model. This study
introduces FedMRL, a novel federated multi-agent deep reinforcement
learning framework designed to address data heterogeneity. FedMRL
incorporates a novel loss function to facilitate fairness among clients,
preventing bias in the final global model. Additionally, it employs a
multi-agent reinforcement learning (MARL) approach to calculate the
proximal term (µ) for the personalized local objective function, ensuring
convergence to the global optimum. Furthermore, FedMRL integrates an
adaptive weight adjustment method using a Self-organizing map (SOM)
on the server side to counteract distribution shifts among clients’ local
data distributions. We assess the proposed approach using two publicly
available real-world medical datasets, and the results demonstrate that
FedMRL significantly outperforms state-of-the-art techniques, showing
its efficacy in addressing data heterogeneity in federated learning. The
code can be found here https://github.com/Pranabiitp/FedMRL.

Keywords: Federated learning · Heterogeneity · Reinforcement learn-
ing.

1 Introduction

Deep learning (DL) algorithms have demonstrated significant achievements in
medical image analysis tasks [15], [19], [18], [17]. However, creating effective DL-
based models typically requires gathering training data from various medical
centers, such as hospitals and clinics, into a centralized server. Obtaining pa-
tient data from multiple centers presents challenges due to privacy concerns, le-
gal restrictions on data sharing, and the logistical difficulty of transferring large
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data volumes [20]. Researchers have increasingly employed Federated Learn-
ing (FL) as a solution, enabling medical image classification with decentral-
ized data from multiple sources while preserving privacy [25], [3]. Unlike models
trained independently at individual sites, FL can leverage a more diverse and
extensive dataset, resulting in improved performance and increased generaliz-
ability [13], [11]. The efficacy of federated training encounters challenges due
to data heterogeneity within local hospital datasets, resulting in performance
degradation in real-world healthcare applications. This heterogeneity manifests
in various forms: some hospitals may possess more data from the early stages of
the diseases, while others collect data with severe conditions, leading to label dis-
tribution skew. Additionally, variations in data quantity among hospitals, with
larger institutions having more patient data compared to community clinics, con-
tribute to quantity skew. Moreover, differences in imaging acquisition protocols
and patient populations further exacerbate feature distribution skew [24]. Fe-
dAvg, a foundational FL algorithm, while successful in many scenarios, exhibits
diminished efficacy in heterogeneous data settings [13]. To address this challenge,
FedProx [8] introduced a proximal term (µ) into the conventional optimization
objective to penalize large updates in the model parameters. However, selecting
an optimal value for the µ in FedProx presents a challenge, as traditional meth-
ods like trial and error or heuristics may not effectively adapt to heterogeneous
data distributions.

Distribution shifts within each hospital’s private dataset often result in sce-
narios where the global model performs better for certain hospitals but neglects
others. The study [9] introduced q-fairness optimization problems in FL, where
the parameter q guides the loss function to desirable outcomes. Huang et al. [6]
focused on fairness and robustness by dynamically selecting local centers for
training, but this approach may not be suitable for the medical domain due to
limited participant hospitals. Lyu et al. [12] proposed a collaborative, fair FL
framework to enforce convergence to different models, addressing fairness dif-
ferently. Another challenge is that existing methods commonly train the global
model by minimizing the average training losses of all local clients [13], [10], [22].
However, these approaches lack performance guarantees for individual hospi-
tals as they prioritize average training results, leading to divergent performance
across participants [8]. This challenge is further exacerbated in real-world scenar-
ios where data from medical centers exhibit discrepancies in both size and distri-
bution [4]. Motivated by the aforementioned challenges, we introduce FedMRL, a
novel framework that addresses these issues through three distinct components.
Our main contributions are:

– The FedMRL framework introduces a novel method for calculating adaptive
µ values by leveraging the QMIX algorithm from Multi-agent Reinforcement
Learning (MARL). This approach accounts for client-specific factors such as
data distribution, volume, and performance feedback, facilitating dynamic
regularization adjustments during FL training.

– We propose incorporating a novel loss function into individual client ob-
jectives to promote fairness, aiming to mitigate discrepancies between each
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client’s loss and the global loss. This will reduce potential biases towards
specific clients or groups of clients within the system.

– Our solution involves a server-side adaptive weight adjustment method using
a self-organizing map (SOM). This prioritizes contributions from clients with
similar data distributions, determined by cosine similarity between local and
global models.

– Experiments conducted on two real-world medical datasets on severe degree
of data heterogeneity (η = 1) show that FedMRL outperforms several state-
of-the-art FL techniques.

2 Problem Statement

Assuming there are H hospitals, each represented by h ∈ [1, 2, · · · , H], and
possessing privately labeled data denoted by Dh, the aim is to train a generalized
global model over the combined dataset D =

⋃H
h=1D

h. The global objective
function is represented in Eq. 1.

argmin
w

L(w) =
H∑

h=1

|Dh|
|D|

Lh(w) (1)

The local objective function Lh(w) in client h, which quantifies the local empir-
ical loss over the data distribution Dh, is represented in Eq. 2.

Lh(w) = Ex∼Dh [lh(w;x)] (2)

In this context, lh denotes the loss function utilized by client h, and w represents
the global model parameters. While the above fixed weighted averaging method
offers an unbiased global model estimation in the presence of independent and
identically distributed (IID) training samples across clients, non-IID distribu-
tions, stemming from device and user heterogeneity, lead to slower convergence
and reduced accuracy [26]. To address this challenge, we propose FedMRL, in-
tegrating a novel fairness term into the local objective function, dynamically
determining the proximal term for each hospital through a MARL-based ap-
proach, and employing a self-organizing map-based aggregation method at the
server. The final local objective function is represented as shown in Eq. 3.

argmin
w

L(w) =
H∑

h=1

|Dh|
|D|

Lh(w) +
µ

2
∥w − wt∥2 + Lfair(w) (3)

3 Proposed Framework

This section provides a comprehensive overview of the proposed FedMRL, which
consists of three contributions such as calculating adaptive personalized µ Value,
novel loss function, and server-side adaptive weight Aggregation using SOM. The
overall algorithm is represented in Algo. 1. The architecture details are shown
in Fig. 1.
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Fig. 1. The proposed architecture comprises clients and a server: (a) Clients transmit
their model weights to the global server, while agents corresponding to clients retrieve
the corresponding state si from the global state s and compute the respective µi,
subsequently sharing it with the corresponding hospitals. (b) Global weight aggrega-
tion is facilitated using SOM, where αi denotes the weight adjustment factor, and wi

represents the local model weights utilized to derive the final global model wt+1 for
subsequent communication rounds.

3.1 Adaptive Personalized µ Value

For the dynamic adaptation of µ, we frame it as a multi-agent reinforcement
learning problem, with each hospital h having an agent on the server side. Each
agent h observes its state si from the overall environment state st, selects an
action ai based on the current policy πt, and the agents’ actions collectively
form the joint action Ai. The environment transitions to the next state si+1 ac-
cording to the state transition function P (si+1|si, ai), iterating until completion
or predefined criteria are met. In the proposed work, we integrate QMIX [16],
a prominent Q-learning algorithm for cooperative MARL in the decentralized
paradigm that represents an advancement over Value-Decomposition Networks
(VDN) [21]. Essentially, VDN assesses the influence of each agent on the collec-
tive reward, considering that the joint action-value Qtot(s, a) can be decomposed
into N individual Q-functions for N agents, with each Q-function relying solely
on local state-action history, represented in Eq. 4.

Qtot(s, a) =
N∑
j=1

Qj(sj , aj , θj) (4)

State: The state of the environment at round t is st = [st,1, st,2, · · · , st,h] rep-
resenting the data distribution among clients and performance feedback st,i is
defined in Eq. 5.

st,i = (Ec, Pc, accc, lossc) (5)
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We have represented the entropy of the dataset in the cth client (Ec) as defined
in Eq. 6 and the ratio of the data samples in the cth client to the data samples
in all clients (Pc), are represented in Eq. 7 [25].

Ec =
M−1∑
m=0

Nm

Nc
log

(
Nm

Nc

)
(6)

Pc =
Nc

N
(7)

Nm, Nc, and N denote the number of data samples belonging to the mth class
in the cth client, the total number of data samples in the cth client, and the total
data samples in FL sourced from local clients, respectively. Additionally, the cth

local model’s accuracy and training loss, denoted as accc and lossc, respectively,
are dynamic metrics that evolve across communication rounds, serving as per-
formance feedback for the local models. (Ec) and (Pc) depict the features of the
local datasets and remain constant throughout the training.
Action: We consider the proximal term µ as our action-space, a continuous
value ranging from 0 to 1, and initialize it at a minimal value (≈ 0.00001) at
the beginning of FL training. Subsequently, following the first communication
round, agents determine µ based on the current policy, resulting in a joint ac-
tion denoted as At = [at,1, at,2, · · · , at,h], where at,i represents the proximal term
value assigned to agent hi.
Reward: The observed reward value in round t is denoted as rt = e(acct−ζ)− 1,
where e represents the natural constant, ζ denotes the target accuracy, and acct
signifies the global model’s test accuracy at round t. The QMIX agent maximizes
the anticipation of the cumulative discounted reward (R) through training, as
described in Eq. 8, where γ ∈ (0, 1] is the discount factor.

R =
T∑

t=1

γt−1rt =
T∑

t=1

γt−1

(
e(acct−ζ) − 1

)
(8)

3.2 Loss Function

Our proposed novel loss function in FedMRL effectively mitigates the impact
of distribution shifts in client datasets, ensuring fairness and consistent perfor-
mance across all participating institutions. By incorporating a fairness term into
the local objective function of individual hospitals, FedMRL adjusts model pa-
rameters to achieve uniform training loss across all H hospitals, inspired by the
Mean Square Error (MSE) loss commonly used in regression models. The fair-
ness term is formulated as an optimization problem aiming to minimize the sum
of squares of differences in loss between each of the H hospitals and the global
loss, as presented in Eq. 9.

Lfair =

H∑
h=1

(Fh(w)− F (w))
2

(9)
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where, w represents the parameter of the global model, H denotes the number
of hospitals, Fh(w) signifies the local loss function of individual hospital h based

on its local data, and F (w) =
∑H

h=1 Fh(w) represents the global loss function.
The proof of the above-proposed loss function can be found in Section 1 of the
supplementary material.

Algorithm 1: Steps of the proposed FedMRL.

Input: Set of hospitals H, initial global model weights w0, target
accuracy ζ, number of communication rounds T

Output: Global model parameter wt

Initialize i = 0;
while i < T do

Each hospital downloads the weights of the initial global model,
performs local SGD training for 1 epoch by minimizing the local
objective function represented in Eq. 3, and uploads the local
model weights to the server;
Execute QMIX agent as described in Subsection 3.1;
Execute SOM as described in Subsection 3.3;
Share wt+1 back to all the clients for the next communication round;
i← i+ 1;

end

3.3 Server side Weight Aggregation

FedAvg uniformly averages client model updates, neglecting individual data dis-
tributions, which can impede performance in non-IID scenarios. In contrast, self-
organizing map (SOM)-based weight adjustment considers client model similar-
ity to the global model, significantly impacting clients with more representative
data [7]. This adaptivity effectively addresses non-IID distribution challenges, al-
lowing personalized adjustments based on client and global model similarity, thus
enhancing performance for clients with unique data distributions. We initialize
the SOM grid shape as (5,5), and its weights are randomly initialized. Distances
between the SOM weights and each hospital’s local weights determine the Best
Matching Unit (BMU) on the SOM grid. The influence of local weights on each
SOM neuron is calculated based on its distance to the BMU and current sigma
value, updating the neuron weights accordingly. Weights for each local model
are computed from the SOM weights and similarity metrics, ensuring accurate
representation through normalization. Cosine similarity metrics between local
and global models, combined with distances, determine weights (αi) for each
local model, favoring higher similarity for increased weight. During SOM weight
updates, the influence of each local model scales by its similarity metric, with
higher similarity models exerting greater impact. Normalized similarity metrics
ensure proportional weighting, are responsive to changes in local models over
time and maintain fairness in highly non-IID data settings. The aggregation is
performed according to Eq. 10, where wt+1 denotes the global model parameters
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for the (t + 1)th communication round, wh
t signifies the local model weights of

the hth hospital, and αh represents the weight factor for the hth hospital.

wt+1 =
1

H

H−1∑
h=0

ωh
t · αh (10)

4 Dataset and Experimental Results

4.1 Datasets

We have chosen two distinct benchmark datasets pertinent to real-world medical
contexts to evaluate the effectiveness of the proposed FedMRL framework for
highly heterogeneous scenarios. The ISIC 2018 dataset, notable for its contri-
butions to skin cancer detection, provides diverse dermoscopy images captured
from various anatomical regions. This dataset encompasses 7,200 images cate-
gorized into 7 distinct classes [1]. Additionally, we have utilized the Messidor
dataset [2], consisting of 1,560 authentic fundus images tailored for grading dia-
betic macular edema across five severity levels. Each client’s dataset is split into
20% for testing and 80% for training. For the test dataset on the server side, we
have utilized the validation split of ISIC-2018 and randomly curated 240 images
from the Messidor dataset.

4.2 Implementation Details

We have constructed non-IID data partitions following the methodology outlined
in [14]. Using 80% of each dataset for training purposes, we organize the data
based on their labels and segment each class into 200 shards. Subsequently,
clients create local datasets by sampling from these shards according to the
probabilities represented in Eq. 11.

pr(x) =

{
η ∈ [0, 1], if x ∈ class j,

N(0.5, 1), otherwise.
(11)

Samples from other classes have a Gaussian distribution, but the client samples
from a particular class j with a constant probability η. More samples in a given
class are indicated by higher η values, which produce more diverse datasets.
For all the experiments, we have utilized η = 1.0. Following [23], we employ
DenseNet121 [5] as the backbone. For the Fedprox baseline experiment, we se-
lected the value of µ from the set {0.001, 0.1, 0.4}, and for the Fednova baseline
experiment, we chose the proximal SGD value from the set {0.001, 0.1, 0.2} to
yield the best results.

4.3 Comparison with State-of-the-arts

To assess the efficacy of the proposed FedMRL, we compare them against four
baseline approaches: FedAvg, FedProx, FedNova, and FedBN. Table 1 presents
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Table 1. Results comparison with state-of-the-art methods on two datasets.

Dataset Method ACC AUC Pre Recall F1

Fedavg [13] 72.82 89.85 74.69 72.82 73.74
Fedprox [8] 72.90 90.26 74.30 73.21 73.75

ISIC-2018 Fednova [22] 67.88 86.60 70.51 67.88 69.17
FedBN [10] 71.71 90.18 73.46 71.71 72.57
FedMRL 73.50 80.01 77.04 71.90 74.38

Fedavg [13] 55.83 86.07 51.96 55.83 53.82
Fedprox [8] 57.08 85.99 56.71 57.08 56.89

Messidor Fednova [22] 50.00 82.21 50.70 50.00 50.34
FedBN [10] 55.83 85.07 57.10 55.83 56.45
FedMRL 57.91 85.82 58.23 57.91 58.06

the results of all the models in terms of Accuracy (ACC), Area under the ROC
Curve (AUC), Precision (Pre), Recall, and F1-score (F1). The results high-
light FedMRL’s superior performance over baseline algorithms, demonstrating
significant accuracy improvements across both datasets. Specifically, FedMRL
outperforms state-of-the-art methods by 0.92%, 0.81%, 7.64%, and 2.43% for
the ISIC-2018 dataset, and by 3.59%, 1.43%, 13.65%, and 3.59% for the Messi-
dor dataset, compared to FedAvg, FedProx, FedNova, and FedBN, respectively.
These improvements come from the advantage of using MARL to learn the
data heterogeneity in the network and adaptively optimize the local objective
of clients. Additionally, our novel loss function promotes fairness among clients,
while the SOM-based adaptive weight adjustment method for aggregation en-
hances convergence to a better global optimum. We conducted an ablation study
to assess the impact of the proposed components. Without the novel loss func-
tion, accuracy reached 70.06% on ISIC-2018 and 51.25% on the Messidor dataset.
Similarly, omitting the SOM method resulted in accuracies of 68.0% on the ISIC
dataset and 52.45% on the Messidor dataset.

5 Conclusion

This study addresses the challenge of data heterogeneity in federated learn-
ing while ensuring fair contributions from the decentralized participants. Our
framework demonstrates robustness to non-IID data distribution across clients
and outperforms existing benchmarks in two medical datasets. While effective
in mitigating the challenges posed by non-IID data distributions, FedMRL may
encounter scalability issues when dealing with a large number of clients. Fur-
thermore, the computational overhead associated with calculating personalized
µ values and performing server-side adaptive weight aggregation using SOM may
impose additional computational burdens, particularly in resource-constrained
environments. In future work, we envision exploring distributed computing and
resource-sharing models to alleviate the computational burden and aim to en-
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hance FedMRL’s scalability and efficiency while exploring its applicability in
diverse domains.

Disclosure of Interests The authors declare that there are no competing
interests to report in the paper.
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