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Abstract. Representation learning offers a conduit to elucidate distinc-
tive features within the latent space and interpret the deep models.
However, the randomness of lesion distribution and the complexity of
low-quality factors in medical images pose great challenges for models
to extract key lesion features. Disease diagnosis methods guided by con-
trastive learning (CL) have shown significant advantages in lesion feature
representation. Nevertheless, the effectiveness of CL is highly dependent
on the quality of the positive and negative sample pairs. In this work,
we propose a clinical-oriented multi-level CL framework that aims to en-
hance the model’s capacity to extract lesion features and discriminate
between lesion and low-quality factors, thereby enabling more accurate
disease diagnosis from low-quality medical images. Specifically, we first
construct multi-level positive and negative pairs to enhance the model’s
comprehensive recognition capability of lesion features by integrating in-
formation from different levels and qualities of medical images. Moreover,
to improve the quality of the learned lesion embeddings, we introduce
a dynamic hard sample mining method based on self-paced learning.
The proposed CL framework is validated on two public medical image
datasets, EyeQ and Chest X-ray, demonstrating superior performance
compared to other state-of-the-art disease diagnostic methods.

Keywords: Contrastive learning · Disease diagnosis · Low-quality med-
ical images.
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1 Introduction

Medical image classification plays a crucial role in clinical disease diagnosis. Au-
tomatically identifying whether medical images indicate health or disease, and
even pinpointing specific illnesses, can alleviate the repetitive burden on clini-
cians and increase the efficiency of diagnoses. Though recent studies have shown
that deep learning techniques hold promise for medical imaging applications [12],
these techniques are often constrained by limited data annotations and insuffi-
cient supervision.

Fig. 1. Left : Some cases of low-quality image. Right : We use t-SNE to visualize the
feature distribution, with 200 high-quality lesion samples, 200 high-quality healthy
samples, 50 low-quality lesion samples, and 50 low-quality healthy samples. (a1)&(a2)-
General contrastive learning with only high-quality images and the visualization of
corresponding feature distribution. (b1)&(b2)-The impact of low-quality factors on
general contrastive learning and the visualization of feature distribution. (c1)&(c2)-
The proposed contrastive learning and the visualization of feature distribution.

To address these challenges in real clinical settings and fully exploit medical
images without pixel-level annotations, some existing studies [11, 15, 24] proac-
tively explore the impact of contrastive learning (CL) [4, 8] on automated dis-
ease diagnosis models. However, they do not fully consider the common quality
variations in medical images, which limits their effectiveness in eliminating the
interference of low-quality factors on disease diagnosis. As shown in Figure 1 left,
the medical images often suffer from various low-quality factors such as artifacts,
blurring and so on, leading to a quality degradation [1, 16]. Ideally, CL guides
diagnostic models to effectively distinguish between lesion samples and healthy
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samples in Figure 1(a1)&(a2). However, as illustrated in Figure 1(b1)&(b2),
low-quality factors may cause CL to incorrectly pull the distance in the embed-
ding space between lesion samples and low-quality healthy samples, or between
healthy samples and low-quality lesion samples, thereby degrading the diagnostic
performance of diseases.

The challenge mentioned above motivates us to develop a Clinical-oriented
Multi-level Contrastive Learning method, named CoMCL, tailored for auto-
matic disease diagnosis on low-quality medical images. In the deployment of CL
for disease diagnosis, our objective is to mitigate the effects of low-quality fac-
tors and false negative samples [20,26], and to ensure that samples with similar
semantic information remain close in the joint embedding space, as shown in
Figure 1(c1)&(c2). To achieve this, we construct multi-level positive and neg-
ative pairs for the following three purposes: 1) Enhancing the ability of CL to
distinguish low-quality factors from lesions in low-quality medical images; 2) Im-
proving the ability of CL to discriminate between lesion and non-lesion areas; 3)
Enhancing the awareness of CL to identify lesion characteristics in low-quality
images. These abilities facilitate the modeling of the potential lesion-related em-
beddings, hereby enhancing the performance of the downstream diagnostic tasks.
In summary, our contributions can be summarized as follows. (1) We propose a
multi-level CL framework that focuses on alleviating the impact of low-quality
factors on lesion feature extraction. Besides, it also alleviates the issue of false
negatives that occur when CL is introduced into the diagnosis of low-quality
medical images. (2) To improve the capability of CL in extracting lesion-related
embeddings in low-quality medical images, we introduce a self-paced learning
strategy to fully exploit and leverage hard negatives. (3) CoMCL is evaluated on
the large-scale EyeQ and Chest X-ray datasets. Experimental results show that
CoMCL significantly outperforms the state-of-the-art automatic disease diagno-
sis methods.

2 Method

Figure 2 shows the overview of CoMCL. In the first phase, we construct multi-
level positive and negative pairs based on a lesion detector [11] pre-trained on an
auxiliary dataset (IDRiD [17]) with pixel-level lesion annotations. This frame-
work focuses on representing shared information among multi-level positive and
negative pairs, alleviating the influence of imaging quality factors. In the second
phase, a self-paced learning-based dynamic sampling method effectively lever-
ages hard negatives [3, 18] and enhances the learned feature embedding quality.

2.1 Construction of multi-level positive and negative pairs

In this section, we provide a comprehensive description of the multi-level con-
struction of positive and negative pairs. The incorporation of the multi-level
positive and negative pairs serves the dual purpose of aligning samples with
similar semantic features and mitigating the effects of false negatives on the
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Fig. 2. The overall architecture of CoMCL comprises two components. 1) Construction
of multi-level positive and negative pairs for mitigating the effects of low-quality factors
and false negatives. 2) Multi-level dynamic hard sample mining for improving the
quality of the learned lesion-related embeddings.

feature embeddings learned by the model. Specifically, given a dataset X anno-
tated with disease and quality annotations, we segregate X into four subsets,
including high-quality lesion images subset XL, low-quality lesion images subset
XL̃, high-quality healthy image subset XH and low-quality healthy image sub-
set XH̃ . Then, we apply a pre-trained detector fdet(·) on XL/XL̃ and obtain
high-confidence detection regions. Finally, the different level samples, denoted
as V m = {m ∈ {L, L̃,H, H̃}|vm1 , vm2 . . . vmi }, includes two parts: Ω(fdet(X

m) >

conf) (m ∈ {L, L̃}) and RandC(Xm) (m ∈ {H, H̃}), where conf denotes the
confidence threshold of detection results, Ω(·) indicates the operation of expand-
ing the predicted boxes of fdet(·) to 128*128 to ensure the inclusion of lesions
as much as possible, and RandC(·) indicates randomly cropping images into
patches with 128*128 from the healthy images.

Given a patch vmi generated from V m, we consider ṽmi that is an augmented
version from vmi as a positive sample and every patch vnk in the V n|n!=m as neg-
atives. Upon encoding each positive and negative sample, we acquire the feature
embedding matrixes emi /ẽmi ∈ Em and enk ∈ En, respectively. Subsequently, the
contrastive loss can be defined as:

LV m,V n

Contrast = −
∑
i

log

 exp
(
sim

(
emi , ẽmi

)
/τ
)

exp(sim(emi , ẽmi )/τ) +
∑

k exp (sim (emi , enk ) /τ)

 .

(1)
The primary goal of CoMCL is to enhance the model’s ability to handle chal-

lenges arising from variations in image quality and concentrate on the accurate
extraction of lesion-related features in the complicated clinical setting. To this
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end, V L and its augmented versions are designated as positives, while V L̃ is iden-
tified as negatives, thereby deriving a CL loss, named LV L,V L̃

Contrast. This constraint
enables the model to better discriminate low-quality factors in medical images
and minimize the influence of low-quality factors, leading to a more accurate
embedding of lesion-related features. Then, to further facilitate the extraction
of lesion features and ensure the model’s capability to differentiate between the
lesion and healthy patches, we regard samples from V L as positive samples while
V H as negatives, and define a CL loss, named LV L,V H

Contrast. Finally, to further im-
prove the model’s robustness and enhance its ability to distinguish lesion from
non-lesion regions in conditions of poor image quality, we treat samples from
V L̃ as positives and samples from V H̃ as negatives, and devise a CL loss, named

LV L̃,V H̃

Contrast.

2.2 Multi-level dynamic hard negatives mining

In various supervised or unsupervised algorithms [2,13] based on metric learning,
research on the impact of mining hard negatives on training suggests that not
all negatives hold equal value in CL. Moreover, hard negatives are semantically
more similar to positives than regular negatives, indicating that hard negatives
contain features of higher learning value, offering more potential beneficial in-
formation for CL. Based on this finding, we introduce self-paced learning into
CL. Given the model parameters w at the current training step t, when updat-
ing the parameters of the model, we incorporate a binary variable si based on
the previous loss LV m,V n

Contrast, to decide whether each sample is selected. According
to the similarity matrix Mmn = {Mmn

P ,Mmn
N }, the resampled sample matrix

M
′mn = {Mmn

P ,M
′mn
N } can be defined as:

M
′mn =

{
zmi | zmi ∈ Sort(Mmn), sim (zmi , znk ) ≥ sim(zmi , znKt

)
}, (2)

where Kt is an adaptive parameter, determining the number of hard negatives
to be considered. Specifically, Kt = ⌊δ ∗ cos( πt

2Tmax
)⌋, where δ indicates the total

number of negatives and Tmax is the maximum training step. Therefore, for the
update of multi-level CL models, we define the following optimization objective:

(wt+1, vt+1) = argmin

(
r(wt) +

n∑
i=1

siL
V m,V n

Contrast(M
′mn)− 1

Kt

n∑
i=1

si

)
, (3)

where r(·) denotes a regularization item, preventing the model from overfitting.
By adjusting the value of Kt, we can adjust the number of hard negatives that af-
fect the training procedure and model’s generalization. If LV m,V n

Contrast(M
′mn) < 1

Kt
,

then si = 1 indicates that the sample is chosen for model fine-tuning. Otherwise,
si = 0 indicates that the sample is not selected. To validate the effectiveness of
CoMCL, the parameters obtained from the multi-level CL phase are transferred
to downstream disease diagnostic models, and then fine-tuned in a supervised
learning setting to adapt to specific disease diagnostic tasks.
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3 Experiments

3.1 Datasets and Implementation Details

EyeQ dataset [6] is a large public fundus image benchmark for diabetic retinopa-
thy (DR) grading and quality assessment, containing 12,543 training and 16,249
testing images. Based on image quality and DR severity, the images are classified
into three quality categories and five severity levels.
Chest X-ray dataset [22] is obtained from the public NIH-ChestXray14 multi-
label dataset. The training and test sets contain 8,573 and 7,007 frontal X-ray
images, respectively. Based on image quality and chest diseases, the dataset in-
cludes two quality labels: high and low, and eight disease types. We validate the
promotive effect of CoMCL on multi-class disease diagnosis using this dataset.
Implementation Details. ResNet50 [9] is used as the backbone network for
feature extraction, with the global average pooling and fully connected layers re-
moved. For the construction of multi-level positive and negative pairs, all patches
are cropped to 128×128 due to varying original image sizes. The temperature
parameter τ in Equation 1 is set to 0.07. During multi-level dynamic hard sample
mining, parameters are optimized using the Adam optimizer (momentum=0.9)
over 800 epochs. Training starts with a learning rate of 1 × 10−3 and a batch
size of 400.

3.2 Comparison with the State-of-the-Art

This section presents both quantitative and qualitative comparisons with vari-
ous recent disease diagnostic methods on the EyeQ and Chest X-ray datasets,
showcasing the effectiveness of the CoMCL framework for single-label (DR grad-
ing) as well as multi-label chest disease diagnosis. We compare CoMCL with
several comparable methods, including Resnet50, Inception-v3, DenseNet-121,
MMCNN [25], Zoom-in-Net [23], Lesion-base CL [11], CABNet [7], DeepMT-
DR [21], Lesion-aware CL [5], and LANet [10]. For all comparable methods, we
follow the same experimental setup described in their original papers to ensure
the fairness and competitiveness of each competing approach.

As shown in Table 1, CoMCL significantly outperforms comparable methods
for both DR grading and multi-label chest disease diagnosis, achieving higher
Kappa and Accuracy scores. The results highlight several interesting observa-
tions: (1) We first explore the impact of the proportion of low-quality images in
the EyeQ and Chest X-ray datasets on CoMCL and comparable methods. As
the proportion of low-quality images increases from the original 33.4%/43.2%
(the proportion of low-quality images in the original dataset) to 100% (by de-
grading all images using [14, 19]), the performance of all diagnostic methods
decreases across datasets, indicating the negative impact of low-quality fac-
tors. However, CoMCL exhibits a stronger ability to avoid interference from
low-quality factors compared to other methods. (2) Compared to previous CL
methods (Lesion-base CL and Lesion-aware CL), CoMCL exhibits significant ad-
vantages across datasets under different proportions of low-quality images. This
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Table 1. The comparison between CoMCL and the comparable methods in DR grading
and multi-label chest disease diagnosis.

Methods
EyeQ Dataset Chest X-ray Dataset

33.4% 70% 100% 43.2% 70% 100%
Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC Kappa ACC

Resnet50 0.804 0.783 0.743 0.715 0.674 0.662 0.619 0.626 0.594 0.613 0.564 0.589
Inception-v3 0.798 0.776 0.728 0.706 0.652 0.637 0.615 0.624 0.587 0.609 0.558 0.576
DenseNet-121 0.813 0.794 0.756 0.732 0.683 0.668 0.624 0.635 0.603 0.658 0.572 0.607
MMCNN [25] 0.862 0.841 0.795 0.778 0.725 0.704 0.657 0.672 0.632 0.644 0.604 0.626
Zoom-in-Net [23] 0.873 0.854 0.812 0.784 0.736 0.713 0.662 0.684 0.648 0.653 0.615 0.631
Lesion-base CL [11] 0.848 0.832 0.783 0.761 0.694 0.672 0.636 0.652 0.617 0.628 0.584 0.619
CABNet [7] 0.865 0.847 0.797 0.782 0.731 0.709 0.660 0.675 0.643 0.651 0.607 0.628
DeepMT-DR [21] 0.857 0.839 0.791 0.768 0.712 0.694 0.649 0.665 0.621 0.639 0.592 0.624
Lesion-aware CL [5] 0.876 0.857 0.824 0.816 0.757 0.724 0.673 0.691 0.653 0.664 0.626 0.645
LANet [10] 0.854 0.835 0.786 0.765 0.706 0.683 0.642 0.658 0.619 0.634 0.587 0.622
CoMCL(Ours) 0.884 0.872 0.852 0.837 0.793 0.776 0.682 0.708 0.665 0.672 0.641 0.663

advantage mainly benefits from the fact that CoMCL incorporates information
from multiple levels and different qualities of medical images. Therefore, CoMCL
acquires lesion features that are not obvious in low-quality patches, mitigating
the influence of low-quality factors on the learned lesion embeddings, and en-
hancing the model’s ability to comprehensively identify lesion-related features.

3.3 Ablation Study

To comprehensively investigate the contribution of multi-level positive and neg-
ative pairs and self-paced learning to disease diagnosis, we compare CoMCL
with several variants: (1) Baseline (Resnet 50): Training a basic classification
model on the EyeQ dataset. (2) Basic CL: Pre-training a basic CL model [8]
and fine-tuning the downstream classification model on EyeQ. (3) CoMCL w/o
Multi-level: Constructing positives and negatives using only lesion and healthy
samples respectively, without the construction of multi-level positive and nega-
tive pairs. (4) CoMCL w/o SPL: Training without considering self-paced learn-
ing, i.e., without considering hard negatives.

Table 2. Ablation study of CoMCL on
EyeQ dataset.

Methods ACC Kappa
Baseline(Resnet 50) 0.804 0.783
Basic CL 0.842 0.827
CoMCL w/o Multi-level 0.859 0.836
CoMCL w/o SPL 0.868 0.860
CoMCL 0.884 0.872

Table 3. Performance of CoMCL on
EyeQ under different combinations.

Method V L V L̃ V H V H̃ ACC Kappa
CoMCL_v1 ✓ ✓ 0.846 0.835
CoMCL_v2 ✓ ✓ ✓ 0.867 0.856
CoMCL_v3 ✓ ✓ ✓ ✓ 0.884 0.872

The experimental results are shown in Table 2. The following aspects can be
revealed: 1) The baseline model exhibits the lowest performance, underscoring
the importance of CL in modeling specific lesion embeddings. Furthermore, com-
pared to other variants of CoMCL, the baseline CL performs the worst, reflecting
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the adverse impact of low-quality factors on contrastive learning and the signif-
icance of hard negatives to contrastive learning. 2) The performance of CoMCL
w/o Multi-level is lower than that of CoMCL. The construction of multi-level
positive and negative pairs is crucial for improving diagnostic performance when
introducing CL for automatic disease diagnosis. By considering the impact of
low-quality factors on lesion-related embedding extraction, CoMCL can learn
relevant lesion embeddings more effectively, thereby achieving improved disease
diagnostic performance. 3) The performance of CoMCL w/o SPL is lower than
CoMCL. By dynamically mining hard negatives through self-paced learning, the
quality of lesion embeddings is further improved, thereby enhancing the perfor-
mance of disease diagnostic tasks.

Subsequently, we investigate the impact of incorporating different levels on
the final result, as depicted in Table 3, which shows the performance comparison
of the CoMCL method under varying level combinations. From the results, it is
clear that the model CoMCL_v3, by considering all level patches, achieves the
best results in terms of accuracy and kappa. The experimental results show that
simultaneously considering the learning of discriminative embeddings for lesions
and the identification of quality factors achieves a more significant performance
boost after fine-tuning the downstream tasks. Additionally, incorporating low-
quality levels can enhance the model’s ability to discern lesion features under
limited imaging conditions, ensuring that the model’s diagnostics do not solely
rely on high-quality image features. This approach ensures the effectiveness of
the algorithm under complex clinical imaging conditions.

Fig. 3. Visualization results of Regions of Interest (RoIs) across the ResNet and the
representative CL methods.

Figure 3 illustrates the visualization results of baseline(Resnet50) and differ-
ent contrastive learning-based diagnostic methods (Moco, Lesion-base CL and
Lesion-aware CL) for two medical cases: a fundus image indicative of proliferative
diabetic retinopathy (Case 1) and a chest X-ray showing potential pulmonary
pathologies (Case 2). While the other methods are capable of capturing lesions
to a certain extent, they are distracted by more prominent physiological features
and high-contrast edges. In contrast, CoMCL more clearly emphasizes lesion re-
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gions. This indicates that CoMCL has the ability to distinguish lesion-relevant
features from structural aspects and complex low-quality factors of the medical
image, which is crucial for accurate disease diagnosis.

4 Conclusion

In this study, we propose a clinical-oriented multi-level contrastive learning
framework for disease diagnosis in low-quality medical images. The proposed
framework, by constructing multi-level positive and negative pairs, can explore
lesion features from different levels, thereby mitigating the influence of low-
quality factors on the model’s extraction of lesion features. Additionally, we
design a dynamic hard negative mining scheme based on self-paced learning to
fully utilize hard negative samples, significantly improving the quality of feature
embedding. Experimental results show that CoMCL significantly improves the
accuracy of disease diagnosis in low-quality medical images, which is crucial for
conserving medical resources and enhancing the efficiency of medical services.
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