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Abstract. Source-Free Unsupervised Domain Adaptation (SFUDA)
has recently become a focus in the medical image domain adapta-
tion, as it only utilizes the source model and does not require anno-
tated target data. However, current SFUDA approaches cannot tackle
the complex segmentation task across different MRI sequences, such
as the vestibular schwannoma segmentation. To address this problem,
we proposed Reliable Source Approximation (RSA), which can gener-
ate source-like and structure-preserved images from the target domain
for updating model parameters and adapting domain shifts. Specifically,
RSA deploys a conditional diffusion model to generate multiple source-
like images under the guidance of varying edges of one target image.
An uncertainty estimation module is then introduced to predict and
refine reliable pseudo labels of generated images, and the prediction
consistency is developed to select the most reliable generations. Sub-
sequently, all reliable generated images and their pseudo labels are uti-
lized to update the model. Our RSA is validated on vestibular schwan-
noma segmentation across multi-modality MRI. The experimental results
demonstrate that RSA consistently improves domain adaptation perfor-
mance over other state-of-the-art SFUDA methods. Code is available at
https://github.com/zenghy96/Reliable-Source-Approximation.
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1 Introduction

Supervised learning models have recently made substantial advancements in
medical image analysis and typically assume the same data distribution be-
tween train and test data [1]. This assumption challenges them in real-world
practice when confronted with data collected from different imaging systems [2].
To address this domain-shift problem, many adaptation approaches have been
proposed and their application scenarios are becoming increasingly practical.
Unsupervised domain adaptation (UDA) [3,4] is gradually being replaced by
source-free unsupervised domain adaptation (SFUDA) [5] since source domain
data is often invisible due to privacy concerns.

Entropy minimization is a popular technique in existing SFUDA approaches
and aims to produce more confident model predictions [6,7]. TENT [8] is the
pioneer in introducing this concept, which minimizes the entropy of model pre-
dictions to reduce generalization error. TENT necessitates continuous updates
to the model, which potentially incurs significant computational costs and suffers
from unstable performance due to small batch size and imbalanced data. ETTA
[9] needs lower computation costs by identifying reliable and non-redundant
samples. SAR [10] explores obstacles that harm the model performance. Pseudo-
labeling is another mainstream SFUDA technique and aims to discard or cor-
rect erroneous pseudo-labels, which inevitably appear under the influence of
domain shifts. Currently, there exist three distinct solutions: enhancing the qual-
ity of pseudo-labels via denoising, screening out inaccurate pseudo-labels, and
devising a robust disparity metric for pseudo-labels. Many SFUDA methods di-
rectly use the class with the highest prediction probability as the pseudo-label
[11,12,13,14,15,16]. To reduce the noise pseudo-labels generated by the argmax
operation, several approaches primarily focus on developing diverse filtering
mechanisms to utilize dependable pseudo-labels selectively, such as maximum
prediction probability [11,12,13,14], self-entropy [15], consistency score [12,16],
and weight-averaged predictions [17]. However, most SFUDA methods are val-
idated on domain-shift data caused by different centers, protocols, or devices,
and are unable to effectively handle the segmentation task between different
MRI sequences, which have relatively large domain shifts.

Complex medical image segmentation tasks in domain adaptation commonly
use source approximation, which aims to generate source-like images and is gen-
erally implemented in UDA scenarios through CycleGAN [18]. Cai et al. [19]
introduce a cross-modality MR/CT segmentation framework utilizing Cycle-
GAN, which integrates a shape consistency loss to maintain anatomical coher-
ence across source and target images. Jiang et al. [20,21] employ CycleGAN to
produce MRI images from CT scans for lung tumor segmentation, facilitating
precise delineation of tumors adjacent to soft tissues. For SFUDA scenarios,
source approximation is implemented by Fourier transform. For example, FSM
[22] acquires a preliminary source image by immobilizing the source model and
refining a trainable image, which is enhanced through mutual Fourier Trans-
form. The resultant refined source-like image depicts the source data distribu-
tion, thereby aiding in domain alignment throughout the adaptation procedure.
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Fig. 1. Overview of the proposed SFUDA method. Two models are pre-trained using
source data, and the target adaptation phase consists of Reliable Source Approximation
(RSA, black arrows) and model fine-tuning (green arrows).

first attains a coarse source image by freezing the source model and training
a learnable image, then refines the image via mutual Fourier Transform. The
refined source-like image provides a representation of the source data distribution
and facilitates domain alignment during the adaptation process.

In this paper, we proposed the Reliable Source Approximation (RSA) for
vestibular schwannoma segmentation across different MRI sequences. In con-
trast to previous SFUDA source approximations, our method innovatively uses
edge-guided image translation to generate source-like and structure-preserved
images from the target domain. To obtain the most reliable generated images
and their pseudo-labels, an uncertainty segmentation model is introduced to
produce reliable pseudo-labels through uncertainty refinement, and the predic-
tion consistency is proposed to identify the optimal approximation result. Our
contributions can be summarized as follows: (1) We propose a novel source ap-
proximation method through edge-guided image translation. (2) We introduce
the uncertainty refinement and prediction consistency to obtain the most reli-
able approximation result. (3) Our proposed RSA outperforms other SFUDA
methods on adaptive vestibular schwannoma segmentation.

2 Methodology

Figure 1 illustrates our SFUDA framework via reliable source approximation.
Given the source data with annotation Ds = {xis, yis}Ni=1, we first train the edge-
guided diffusion model gθ and the uncertainty segmentation model fθ. Then, the
source-like and structure-preserved images are generated under spatial guidance
from edges. The prediction consistency and uncertainty are used to find the
optimal generated image xij and its reliable pseudo label ŷij . Finally, all xt, yij ,
and ŷij are used to finetune the uncertainty segmentation model for adaptation.



4 Zeng et al.

2.1 Edge-guided Image Translation

The edge-guided image translation aims to translate image style and simulta-
neously preserve the original spatial structure. To achieve this, we first train
a basic denoising diffusion probabilistic model (DDPM) [23] for source image
synthesis. It can generate source-like images by progressive denoising an input
Gaussian noise, but generated images are completely random without any spa-
tial guidance. Here, we consider the edge e as spatial guidance, which is derived
from Canny algorithm ψ:

e = ψ(xs, T ) (1)

where T is the Canny threshold and produced based on annotation. Following
the ControlNet [24] strategy, we connect the locked DDPM and its trainable copy
by zero convolution layers, and decode the edge into the model to learn spatial
guidance. The learning objective of the entire edge-guided diffusion model fθ is
defined as:

Ldif = Exs,t,e,ϵ∼N (0,1)

[ ∥∥ϵ− ϵf
(
xts, t, e

)∥∥ ] (2)

where ϵ is real noise and ϵf is estimated noise. xts is the noisy image, obtained by
progressively adding the random noise t times to a source image xs. The opti-
mization of the edge-guided diffusion model involves minimizing the discrepancy
between real and estimated noises.

2.2 Uncertainty segmentation model

The uncertainty segmentation model is employed to produce segmentation masks,
with the uncertainty estimation being utilized for pseudo-label refinement. We
use the basic U-Net [25] for the segmentation task and the learning objective
consist of the commonly used cross-entropy loss and Dice loss:

Lseg =

C∑
n=1

−yns log(ŷ) + 1− 2 ∗ ys ∗ ŷ + 1

ys + ŷ + 1
(3)

where ŷ = fθ(xs) is the predicted mask.

In our work, we expanded the U-Net architecture by introducing an ad-
ditional branch aimed at estimating prediction uncertainty. Importantly, this
extension seamlessly integrates into the existing U-Net structure without neces-
sitating any fundamental alterations. This new branch is dedicated to directly as-
sessing uncertainty by predicting the parameters of the Normal-Inverse-Gamma
(NIG) distribution [26]. The NIG distribution serves as a conjugate prior dis-
tribution for the source domain distribution. We consider the relationship as
follows: ys follows a normal distribution N (µ, σ2), where µ follows N (γ, σ2ω−1)
and σ2 follows Γ−1(α, β), where Γ−1 represents the gamma function. This formu-
lation characterizes the distribution of ys as an NIG distribution with parameters
γ, ω, α, and β.
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p(µ, σ2|γ, ω, α, β) = βα
√
ω

Γ (α)
√
2πσ2

(
1

σ2

)α+1

exp

{
−2β + ω(γ − µ)2

2σ2

}
(4)

where γ ∈ R, ω > 1 and β > 0. In the training phase, we apply the following
negative log-likelihood loss to account for the NIG distribution

LNIG =
1

2
log

(π
ω

)
− α log(Ω) + (α+

1

2
) log((y − γ)2ω +Ω) + log(Θ) (5)

where Ω = 2β(1 + ω) and Θ =
(

Γ (α)

Γ (α+ 1
2 )

)
. Furthermore, we introduce a regu-

larization term LR = |yi − γ| · (2ω + α) into the total loss to penalize incorrect
evidence

Lun = LNIG + λLR (6)

We introduce a coefficient λ to balance the contributions of the two loss terms.
Ultimately, we replace the deterministic output of the model with a NIG distri-
bution fθ(xs) = NIG(γ, ω, α, β). The prediction ŷ and the model uncertainty
map u are defined as:

ŷ = E(u) = γ (7)

u =
β

ω(α− 1)
(8)

2.3 Reliable Source Approximation

Due to domain shift, it is impossible to directly find an edge of the target image
and obtain a high-quality source approximation through the edge-guided dif-
fusion model learned from the source domain. Therefore, we generate multiple
edges with n thresholds {ei|ei = r(xt, Ti), i = 1, 2, . . . , n} for a target image xt,
and n×3 images are generated under the guidance of edges. The key challenge is
to find the optimal source approximation: the source-like and structure-preserved
generated image with its reliable pseudo-label.

Refine pseudo-label using uncertainty Domain shift can compromise the
accuracy of pseudo-labels, potentially hindering overall model performance if the
model is directly fine-tuned using them. To mitigate this issue, we employ uncer-
tainty estimation to discern pixels with dependable pseudo-labels, subsequently
utilizing only refined pseudo-labels for model supervision. Since the uncertainty
segmentation model always exhibits high uncertainty at the edges of tumors
when predicting generated images, we include the non-tumor pixels with high
uncertainty at the edges in our analysis:

ŷij = 1{uij > Tun} ⊕ ŷij ∪ ŷij (9)

where Tun is the threshold of uncertainty, and 1{uij > Tun} find the high uncer-
tainty prediction. The operation ⊕ finds non-tumor pixels with high uncertainty,
and ∪ incorporates them into the predicted mask.



6 Zeng et al.

Prediction consistency Under the guidance of same edge ei, the spatial struc-
tures of all generated images {xi1, xi2, xi3} should be consistent if ei provides a
precise spatial context. Further, their predictions {ŷi1, ŷi2, ŷi3} should be similar
and the prediction consistency Ri is defined as:

Ri = 1−
⋂3

j=1 ŷij⋃3
j=3 ŷij

(10)

the edges with prediction consistency above TR are filtered out and best edge
index is found by argmin{R[i] | R[i] ≤ TR, i ∈ [0, n]}. The final approximation
{xij , ŷij} is found based the smallest variance prediction in {ŷi1, ŷi2, ŷi3}.

Batch-based and centralized fine-tuning We offer two fine-tuning methods
here. Batch-based fine-tuning solely utilizes the current batch to train the model
and directly predicts the results for the current batch. Batch-based fine-tuning
only trains one epoch, and all batches are processed once. Centralized fine-tuning
requires aggregating all batches and conducts multiple epochs of training.

3 Experiment

3.1 Experimental Setup

Dataset and evaluation metrics We validate our SFUDA approach on the
public vestibular schwannoma dataset including ceT1 and hrT2 MRI sequences
from 242 patients [27]. We consider ceT1 MRI as the source domain and hrT2 as
the target domain. Following the data split in [27] and slicing the MRI volume, we
finally obtain 1599 source training images, 1493 target training images, and 423
target testing images. In the evaluation process, the Dice similarity coefficient
(Dice) and the average symmetric surface distance (ASSD) are employed to
quantitatively assess the segmentation outcomes. [27].

Implementation details The experiments are conducted on the PyTorch plat-
form with an NVIDIA A100 GPU. We first train DDPM for 400 epochs using
source images, and then update the entire edge-guided diffusion model for 100
epochs simultaneously using source images and their edges. The diffusion model
training uses the AdamW optimizer with a learning rate of 1e-4 and the batch
size is 16. The sampler is Denoising Diffusion Implicit Models (DDIM) [28] with
50 steps. We train the uncertainty segmentation model for 100 epochs and use
the Adam optimizer with a learning rate of 1e-4 and a batch size of 32. Both the
generated images and inputs of the uncertainty segmentation model are 320×320
resolutions. In the adaptation phase, we equally divide the range from 30 to 80
to obtain n Canny thresholds. The hyper-parameters are set as n = 2, Tun = 0.2,
TR = 0.3 through ablation study.
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Table 1. Quantitative results of comparison with different methods. The best scores
of batch-based and centralized fine-tuning are highlighted.

Strategy Method Fine-tuning Dice (%) ↑ ASSD (mm)↓
No adaptation Source-only - 6.63 ± 1.85 2.10 ± 0.29

Supervised Target-only - 84.49 ± 0.96 0.87 ± 0.06

Entropy
minimization

TENT[8]
Batch-based 26.53 ± 4.73 9.56 ± 0.70
Centralized 26.55 ± 5.69 9.54 ± 0.80

EATA[9]
Batch-based 26.53 ± 4.73 9.55 ± 0.71
Centralized 26.54 ± 5.70 9.53 ± 0.78

SAR[10]
Batch-based 26.31 ± 5.82 9.52 ± 0.80
Centralized 26.30 ± 5.80 9.51 ± 0.81

Pseudo
-labeling

COTTA[17]
Batch-based 26.52 ± 4.83 9.50 ± 0.60
Centralized 26.54 ± 5.80 9.42 ± 0.77

Source
approximation

FSM[22] Centralized 56.12 ± 1.32 4.56 ± 0.54

Ours
Batch-based 45.55 ± 3.01 8.23 ± 1.11
Centralized 77.83 ± 0.98 1.24 ± 0.11

Target image GT Edge Generated image Prediction Uncertainty

Fig. 2. Visulazition of reliable source approximation and segmentation results.

3.2 Experimental Results

Quantitative comparison In our experiments, the ”source-only” method refers
to training a model solely on the source domain and evaluating it directly on the
target domain without any adaptation. Conversely, the ”target-only” method
involves training and testing exclusively on the target domain. We conducted
comparisons between our approaches and recent SFUDA methods employing
various strategies, with many of these methods employing dual fine-tuning tech-
niques.
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Table 1 presents quantitative comparison results. There is a huge perfor-
mance gap between source-only and target-only methods due to the domain
shift between ceT1 and hrT2 MRI. The Dice score and ASSD of our method
significantly outperform the entropy minimization and pseudo-labeling methods
in two fine-tuning methods (Dice improvements > 45% and > 15%, ASSD im-
provements > 8mm and > 1mm). These improvements can be attributed to the
source approximation ability in tackling large domain shifts. Our method still
outperforms the other source approximation FSM by a margin of 21.71% in Dice
and 3.32 mm in ASSD. All entropy minimization methods achieve similar results,
which means that the latest improvements over TENT have not been very ef-
fective for VS segmentation tasks. Moreover, our method demonstrates greater
stability compared to other approaches, since it achieves the least performance
variance. Figure 2 shows the best source approximations and their segmentation
results, the edge-guided approximations are source-like and structure-preserved.

Table 2. Ablation study for hyperparameter TR.

TR
Approximation Performance

Quality (%) Quantity (n) Dice (%) ASSD (mm)

0.1 86.86 278 77.47 1.49
0.3 78.58 706 77.63 1.53
0.5 73.85 910 76.55 1.46
0.7 69.88 1064 73.11 1.62
0.9 65.33 1226 72.06 1.61

Table 3. Ablation study for hyperparameter Tun.

Tun
Approximation Performance

Quality (%) Quantity (n) Dice (%) ASSD (mm)

0.002 72.66 910 74.95 1.47
0.02 73.85 910 75.59 1.33
0.2 73.92 910 76.32 1.41

Hyper-parameter Sensitivity Analysis We further investigate the impact
of different hyper-parameters through source approximation and model perfor-
mance. The quality of source approximation could be measured by the Dice score
between pseudo-labels and ground truth.

Table 2 presents the results with different prediction consistency thresholds
TR. It presents that both too-loose and too-tight thresholds would cause a drop
in performance: a loose threshold of 0.9 generates a large amount of low-quality
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Table 4. Ablation study for hyperparameter n.

n
Approximation Performance

Quality (%) Quantity (n) Dice (%) ASSD (mm)

2 76.77 786 78.53 1.17
4 73.85 910 75.59 1.33
8 68.72 1107 73.21 1.35

data, which is detrimental to model fine-tuning; a tight threshold of 0.1 yields
better-quality data but in smaller quantities, potentially preventing the model
from acquiring new knowledge. Table 3 presents the results with different un-
certainty threshold Tun. We find that a more relaxed Tun is more beneficial to
results, as too stringent Tun may lead to an excessive number of pixels being
added to the predicted mask and damages the pseudo-label quality. We also find
that Tun only affects the approximation quality but does not impact the quantity.
Table 4 presents the results with different numbers of edges n. Excessive edges
could lead to a surge in low-quality approximations and noisy pseudo-labels,
resulting in decreased performance.

4 Conclusion

This study introduces a novel SFUDA method tailored for the vestibular schwan-
noma MRI segmentation. We implement a novel source-free source approxima-
tion method via edge-guided image translation. The uncertainty segmentation
model and prediction consistency are introduced to obtain Reliable Source Ap-
proximation results. Experimental results on cross-sequence MRI image seg-
mentation demonstrate that our method outperforms state-of-the-art SFUDA
approaches.
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