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Abstract. PET imaging is a powerful modality offering quantitative
assessments of molecular and physiological processes. The necessity for
PET denoising arises from the intrinsic high noise levels in PET imaging,
which can significantly hinder the accurate interpretation and quantita-
tive analysis of the scans. With advances in deep learning techniques,
diffusion model-based PET denoising techniques have shown remark-
able performance improvement. However, these models often face lim-
itations when applied to volumetric data. Additionally, many existing
diffusion models do not adequately consider the unique characteristics
of PET imaging, such as its 3D volumetric nature, leading to the po-
tential loss of anatomic consistency. Our Conditional Score-based Resid-
ual Diffusion (CSRD) model addresses these issues by incorporating a
refined score function and 3D patch-wise training strategy, optimizing
the model for efficient volumetric PET denoising. The CSRD model
significantly lowers computational demands and expedites the denois-
ing process. By effectively integrating volumetric data from PET and
MRI scans, the CSRD model maintains spatial coherence and anatomi-
cal detail. Lastly, we demonstrate that the CSRD model achieves superior
denoising performance in both qualitative and quantitative evaluations
while maintaining image details and outperforms existing state-of-the-
art methods. Our code is available at: https://github.com/siyeopyoon/
Residual-Diffusion-Model-for-PET-MR-Denoising
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Fig. 1. A overview of volumetric PET denoising using a conditional score-
based residual diffusion model. (A) The normal-dose PET volumes undergo Pois-
son thinning to simulate a low-dose PET scan scenario. Subsequently, the residual of
normal-dose and low-dose PET volumes is generated. The residual, low-dose PET, and
MRI volumes were split into smaller patches along with their respective spatial coordi-
nates. (B) During the forward diffusion process, these patches undergo a noise addition
process with time-dependent scheduling, represented by σ(t). Then, the 3D U-net is
trained for a score-matching function by removing an additive Gaussian noise with
patch conditions of low-dose PET, MRI, and coordinates. (C) The trained network
samples the residual of the entire volume from the Gaussian noise via the reverse diffu-
sion process conditioned by entire low-dose PET and MRI associated with coordinates.

1 Introduction

Positron emission tomography (PET) has been widely employed in various realms
due to its ability to provide insights into molecular-level activities, contingent
upon the design of radioactive tracers and regional uptake. However, the signal-
to-noise ratio (SNR) of PET is inherently limited by various factors, includ-
ing the restricted dosage of the radiotracer and the patient radiation exposure.
Consequently, this limited SNR may compromise both the diagnostic quality
and the speed of PET imaging. One practical approach to enhance the SNR of
PET images is through post-processing techniques aimed at reducing noise while
preserving the underlying signal. Among the various post-processing methods,
filtering-based techniques such as Gaussian and total variation (TV) denoising
are commonly used but often struggle to capture the full characteristics of PET
images, leading to significant blurring in the results.
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Recent advancements in deep learning-based methods have demonstrated
superior performance in PET image denoising. These methods leverage the non-
linearity of deep learning models and their ability to incorporate anatomical
information from other modalities such as MRI or CT, enhancing the denoising
performance. The most widely utilized deep learning architectures for super-
vised denoising models are based on U-shaped convolutional neural networks
(CNNs) [3,13,11] and transformers[6,7]. However, these supervised models face
challenges, such as the requirement for high-quality reference images and mis-
matches in data distribution between the training and testing phases, which
can degrade the overall quality of the denoised images. Alternatively, deep im-
age prior techniques leverage PET and anatomical pairs through deep neu-
ral networks without necessitating high-quality PET images [10,1,2]. However,
anatomical structures and spatially inhomogeneous noise distribution can lead
to spatially varying denoising performance. Furthermore, the aforementioned
deep learning methods are deterministic, which limits the uncertainty analysis
of denoising performance.

The diffusion model, specifically for PET imaging denoising [4,15,14], offers
notable outcomes and enables uncertainty analysis through diffusion process re-
alizations. This is because the diffusion model learns the data set’s log density
gradient, called the score function, and provides the stochastic representation of
the dataset [5,16,8]. Despite its promising performance and utilities, the compu-
tational burden limits its adoption in practice. The diffusion model is inherently
slow and requires huge computation resources due to the iterative denoising pro-
cess during inference. Furthermore, PET imaging is essentially three-dimensional
data; it requires a computationally efficient model capable of representing volu-
metric data while existing diffusion models easily exceed the memory capacity,
which causes an additional level of difficulty for model development.

In this study, we present an efficient 3D conditional score-based residual dif-
fusion (CSRD) model designed explicitly for enhancing PET image denoising.
Our model utilizes the EDM framework [8,17], optimized for 3D data handling
and efficient computational performance. By refining the score function represen-
tation and applying 3D patch-wise training, our approach effectively addresses
the challenges of the computing cost and memory demands in the 3D diffusion
model. Our methodology not only facilitates rapid volumetric denoising of 3D
PET images within three minutes but also significantly boosts denoising perfor-
mance with an MR prior.

2 Method

2.1 Score-based Diffusion model for Residuals

In this section, we adapt the score-based diffusion model framework to focus
on the residual distribution between pairs of images to generate residuals to
denoise the image instead of generating the image (Fig. 1). Our objective is to
establish a mapping from Gaussian noise to the residual distribution, which may
not necessarily follow Gaussian or Poisson distributions.
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Let us denote the residual between low-dose PET volume xLow and normal-
dose PET image xNor as r = xLow −xNor. Initially, consider a family of mollified
distributions p(r;σ, xLow) obtained by adding i.i.d. Gaussian noise of standard
deviation σ to the residuals. For a maximum noise level σmax, p(r;σmax, xLow) is
nearly indistinguishable from pure Gaussian noise. The diffusion process can be
described using a probability flow ordinary differential equation (ODE), where
the evolution of a residual ra ∼ p(ra;σ(ta)) from time ta to tb results in a residual
rb ∼ p(rb;σ(tb)). The ODE, as adapted for the residual, is given by [8]:

dr = −σ̇(t)σ(t)∇r log p(r;σ(t))dt (1)

Here, ∇r log p(r;σ(t)) represents the score function for the distribution of resid-
uals, pointing towards higher density regions at a given noise level σ(t). The
score matching for residuals can be expressed as:

L(Dθ;σ) = Ey∼pres
En∼N (0,σ2I)[D(y + n;σ)− y]2 (2)

This defines a loss function for the score-based diffusion model, where y rep-
resents the residual sampled from the distribution of residuals pres, and n ∼
N(0, σ2I) is the noise added to the residual. The denoising score-matching func-
tion D is a neural network parameterized by θ that aims to predict the residual
from the noisy version of it. The loss measures the mean squared error between
the estimated residual and the true residual as:

∇r log p(r;σ, xLow) =
D(r;σ)− r

σ2
(3)

The loss function guides the score-matching neural network in training to esti-
mate the residuals accurately at different steps of the reverse diffusion process.
By adapting these equations to focus on the residual distribution, the diffu-
sion model framework can effectively model the transition between image pairs
through the distribution of their residuals, providing an indirect tool for image-
to-image translation tasks.

2.2 Patch-wise Training of Volumetric Conditional Score-based
Diffusion Model

We will integrate a prior distribution into the residual-based diffusion process to
extend the adaptation of the diffusion model framework for PET image denois-
ing, conditioned by low-dose PET and MR images. By incorporating structural
priors of the MR image, we aim to enforce known anatomic constraints during
the diffusion process.

Let us now consider a prior distribution p(xMR) representing knowledge
about the anatomy. During the diffusion processes, the model aims to reduce
the noise (estimate accurate residual r) and ensure that the image adheres to
the prior distribution. The modified objective can be expressed as follows:

dr = −σ̇(t)σ(t)∇r log p (r;σ(t), xLow, xMR) dt (4)
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Here, ∇r log p (r;σ, xLow, xMR) is the score function that now also takes into
account the prior knowledge about anatomy by MR images. This gradient guides
the reverse diffusion process towards solutions that are more consistent with the
prior anatomy distribution. This can be achieved by conditioning the neural
network on low-dose PET and MRI images. During training, the score-matching
function learns to balance noise reduction with adherence to the prior, optimizing
the overall anatomical coherence in the denoised image.

Incorporating MRI priors into the 3D residual diffusion process ensures that
the denoised images maintain anatomical integrity and consistency. However,
training a 3D diffusion model is resource-intensive due to the significant mem-
ory requirements and the necessity for large 3D datasets. To mitigate these chal-
lenges, a 3D patch-wise loss approach is employed, allowing the model to learn
from smaller, uniformly sampled sub-volumes. This approach capitalizes on the
shift-invariance property of convolution layers, allowing the model to general-
ize well across different spatial locations in the data, thus making the training
process more feasible and efficient without compromising the learning quality.

To adapt the 3D patch-wise loss function for a conditional score-based resid-
ual diffusion model, consider that the model is conditioned not only on the noise
level but also on a prior that describes the 3D location of patches. Then, the 3D
patch-wise loss is given as

LP (Dθ;σ) =
N∑
i=1

Ey∼pres
En∼N (0,σ2I)∥D(yΩi

+ n;σ, xLow, xMR, Ωi)− yΩi
∥22 (5)

, where Ω =
⋃N

i=1 Ωi and N is a total number of sub-divisions of 3D coordinate
of low-dose PET volume Ω. Once the model is trained, the trained model is used
to estimate the residuals of low-dose PET images using the reverse-ODE flow
(Eq. 4) with the second-order corrected stochastic reverse diffusion sampling [8],
which enables further reduction in the reverse diffusion process.

3 Experiments

3.1 Dataset Description

The brain PET dataset scanned 27 individuals with a 7T MRI and HRRT-PET
scanner (Siemens Medical Solutions, Knoxville, TN)[9]. The study protocol was
approved by the Institutional Review Board of the Gachon University and all
procedures used in the study were conducted in accordance with international
ethical standards as set out in the Declaration of Helsinki (GIRBA2365). Each
participant received an injection of 11 C-DASB tracers, with an average dose of
577.6 ± 41.0 MBq. These scans were performed to quantify cerebral serotonin
transporter binding. The PET images, with a matrix size of 256 × 256 × 207 and
voxel size of 1.21875 × 1.21875 × 1.21875 mm3, were reconstructed using the 3D-
OP-OSEM algorithm. The corresponding T1-weighted MR images were collected
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Fig. 2. The representative PET images. The proposed conditional score-based
diffusion model successfully improved the quality of PET volume.

with specific parameters: repetition time of 4000ms, echo time of 5.26ms, flip
angle of 10 degrees, inversion time of 900ms, and a voxel size of 0.7 × 0.7 × 1.5
mm3. The MR images were resampled to the identical spatial resolution as the
PET images using 3D linear interpolation; then, PET images were cropped in
the same field of view of MRI, resulting in a matrix size of 160 × 160 × 160.

We divided 27 patients randomly into a training group (20 patients) and
a testing group (7 patients). The training and testing were conducted using
normal-dose PET volume as a reference and low-dose images, reconstructed using
a 3D-OP-OSEM algorithm from reduced counting via Poisson thinning [10] as
the model input. We applied the Poisson thinning for downsampling directly
to the raw data (like listmode) without any adjustments, such as normalization,
random, scatter, and attenuation corrections. The assumption is that the scatter
and random fractions remain unchanged in low-count data. The Poisson thinning
was specifically used to downsample regular dose data, allowing for random
discarding of coincidence events based on a set sampling factor. For training, 3D
PET volumes were reconstructed at 4×, 6×, and 8× reduced doses in a total of
60 pairs of low-dose and normal-dose volumes together with T1-weighted MR
images. Also, testing low-dose 3D PET volumes were generated at 4×, 6×, 8×,
and 10x downsampling levels. Notably, the 10× downsampled low-dose PET
represents an unseen level of dose reduction during the model training.

3.2 Implementation Details

We implemented our diffusion model within a framework of the original imple-
mentation of EDM [8]. The network architecture was modified for 3D patch-
wise training by extending the network’s layers into 3D. During the training,
the patch size was 643 and randomly sampled. The model has inputted the
patches of residuals, low-dose PET, T1-weighted MR, and coordinates. The
number of channels was set to 64, and mixed precision was used due to compu-
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tational efficiency. The model was trained using Adam optimizer with a learning
rate of 0.002 and a minibatch size 16 in 4× NVIDIA A100 40GB GPUS (5
days) for 65k iterations. If not mentioned otherwise, the same hyperparameters
as those in the original implementation were used. Our code is available at:
https://github.com/siyeopyoon/Residual-Diffusion-PET-MR-Denoising

For performance evaluation of the proposed CSRD method, other most com-
monly used denoising techniques were also implemented, including Total vari-
ation denoising (TV), U-net[12], and Restormer [6]. U-net and Restormer are
U-shaped networks based on CNN and transformer, respectively. Both models
had four levels of encoder-decoder, and the number of channels was 64. Both
models were implemented in 2D and inputted a slice of low-dose PET and T1-
weighted MR, which have a matrix size of 160 × 160. The learning rate was set
to 0.002, and the minibatch size was 16. The training of U-net and Restormer
was performed with MAE loss using Adam optimizer in one NVIDIA A100 40GB
GPUS for 65k iterations. In addition, we separately trained our CSRD model
without a T1-weighted MR image to investigate the impact of anatomic prior.

We evaluated the performance of CSRD with multiple metrics, including
mean absolute error (MAE), peak-signal-to-noise ratio (PSNR), Structure sim-
ilarity index (SSIM), Haralick feature distance (Hdist) [18], and perceptual dis-
tance [19] (Pdist). The Hdist measures the similarity of texture as follows:

Hdist(xNor, xDenoised) =

√√√√ N∑
i=1

(
hi(xDenoised)− hi(xNor)

hi(xNor)
)2, (6)

where hi(xNor) and hi(xDenoised) are i-th components of the Haralick texture
feature of the normal-dose and denoised low-dose images, respectively. The per-
ceptual distance is defined by the mean-squared error of deep features as:

Pdist(xNor, xDenoised) =
1

N

N∑
i=1

(V GGi(xDenoised)− V GGi(xNor))
2, (7)

where V GG(·) is a deep features extracted through a pretrained VGG-19 model.
To analyze the differences among methods, we initially employed a one-way
Analysis of Variance (ANOVA) test to assess whether there were statistically
significant differences between the mean values. Upon finding significant results
from the ANOVA (p < 0.05), we conducted post-hoc analyses using multiple
paired t-tests with the Bonferroni correction to detect the difference between
the proposed CSRD and other methods.

4 Results

We showcase the performance of the proposed CSRD model for 3D PET denois-
ing in Fig 2. We set the number of function evaluations to 100 for inference, and
our model took 3 minutes to denoise 3D PET with a volume size of 160 × 160 ×

https://github.com/siyeopyoon/Residual-Diffusion-PET-MR-Denoising
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Fig. 3. The images and error map in the unseen level of noise (1/10-dose)

160 and required only 12GB on a single GPU. Table 1 summarizes the quanti-
tative results of denoising performance compared to original low-dose and other
SOTA denoising techniques. The presented data suggest that deep learning-
based methods outperformed TV filter-based denoising techniques due to their
ability to capture more complex textures. Additionally, our diffusion model out-
performs all other models in terms of performance in both traditional image
metrics and feature-based metrics. Figure 3 demonstrates the denoised images
and error map in the unseen level of noise (1/10-dose). Even if the dose was not
included in the training, our proposed model minimized blurring through axial
slices and showed anatomical consistency because it leveraged 3D information.
In the case of CSRD without MRI, similar performance was shown compared to
the results with MRI, but residual noise components in the background that were
not removed can be confirmed. This suggests that the anatomical prior in our
model provides additional performance improvement by estimating the residuals
with a conditional diffusion process. The ANOVA indicated statistically signif-
icant differences among the denoising methods for all metrics (all p < 0.05).
Subsequent paired t-tests with Bonferroni correction revealed that the proposed
CSRD with MR significantly improved all evaluated metrics (p < 0.01).

5 Conclusion and Discussion

In this study, we proposed the conditional score-based residual diffusion model
(CSRD) for efficient volumetric PET denoising. Through a refined score func-
tion representation and 3D patch-wise training, the model significantly reduces
the computational load and accelerates the denoising process. By integrating
volumetric data from PET and MRI scans, the CSRD model preserves spatial
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Table 1. Quantitative Comparison of the 11 C-DASB PET Denoising Performance

Methods MAE (↓) PSNR (↑) SSIM (↑) Hdist(↓) Pdist (↓)

Low-Dose 0.059 ± 0.026 35.07± 4.21 0.84 ±0.070 4.84 ± 1.74 0.27 ± 0.17
TV 0.036 ± 0.015 40.04± 4.39 0.91 ±0.048 22.53 ± 8.59 0.33 ± 0.22

U-net 0.034 ± 0.014 40.08± 4.36 0.92 ±0.042 4.57 ± 2.39 0.18 ± 0.12
Restormer 0.036 ± 0.015 40.65± 4.68 0.92 ± 0.045 3.59 ± 1.31 0.14 ± 0.06

CSRD w MR 0.033 ± 0.015 41.11± 4.97 0.93 ±0.044 2.78 ± 1.21 0.10 ± 0.06
CSRD w/o MR 0.056 ± 0.014 40.56± 4.56 0.91 ± 0.039 3.21 ± 1.68 0.10 ± 0.06

coherence and anatomical details, enhancing the PET image’s diagnostic qual-
ity. The CSRD model demonstrated superior denoising performance compared to
other state-of-the-art methods, as evidenced by quantitative evaluations across
various metrics. Further studies are warranted in the assessment of the proposed
method in other radiotracers, such as [18F]FDG and [18F]MK-6240, as well as
different modalities for anatomic priors in PET/CT. In addition, we assumed
that the registration of MR and PET can be achieved using clinical PET-MR
scanners, additional research is needed to investigate changes in denoising per-
formance resulting from image registration. Notably, PET images typically do
not exhibit Gaussian noise, yet in 3D patches with uniform intensities, resid-
ual distribution more closely resembles Gaussian distribution, highlighting the
potential application of CSRD in other image modalities.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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