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Abstract. Computed tomography (CT) is a widely used medical imag-
ing technique to scan internal structures of a body, typically involv-
ing collimation and mechanical rotation. Compton scatter tomography
(CST) presents an interesting alternative to conventional CT by leverag-
ing Compton physics instead of collimation to gather information from
multiple directions. While CST introduces new imaging opportunities
with several advantages such as high sensitivity, compactness, and en-
tirely fixed systems, image reconstruction remains an open problem due
to the mathematical challenges of CST modeling. In contrast, deep un-
rolling networks have demonstrated potential in CT image reconstruc-
tion, despite their computationally intensive nature. In this study, we
investigate the efficiency of unrolling networks for CST image reconstruc-
tion. To address the important computational cost required for training,
we propose UnWave-Net, a novel unrolled wavelet-based reconstruction
network. This architecture includes a non-local regularization term based
on wavelets, which captures long-range dependencies within images and
emphasizes the multi-scale components of the wavelet transform. We
evaluate our approach using a CST of circular geometry which stays
completely static during data acquisition, where UnWave-Net facilitates
image reconstruction in the absence of a specific reconstruction formula.
Our method outperforms existing approaches and achieves state-of-the-
art performance in terms of SSIM and PSNR, and offers an improved
computational efficiency compared to traditional unrolling networks.

Keywords: Compton Scatter Tomography · Image reconstruction · Un-
rolling networks · Wavelet transform.

1 Introduction and Related Works

Computed tomography (CT) is widely used in clinical practice for scanning
internal body structures. These devices use collimation to obtain directional x-
⋆ Corresponding author
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ray information and mechanical rotation of the source-detector pair around the
object to gather complete sets of data. Compton scatter tomography (CST) is
an alternative to CT, utilizing Compton physics instead of collimation to obtain
directional information of transmitted photons. The directional shift ω observed
in Compton scattering correlates with the energy loss of the photon, transitioning
from its initial energy E0 to E(ω), according to the following one-to-one relation:

E(ω) =
E0

1 + E0

mc2 (1− cosω)
,

where mc2 = 0.511 MeV. CST introduces novel possibilities for imaging (assum-
ing the use of energy-resolved sensors), particularly in terms of designing new
geometries; for example, compact and/or completely fixed systems can now be
contemplated [1–6]. In contrast to traditional CT, certain devices offer scanning
configurations with the object positioned outside the system [4, 6–8]. However,
CST introduces new challenges in image reconstruction due to data acquisition,
which involves the use of generalized Radon transforms on families of circular
arcs in 2D. Present literature on this subject is confined to theoretical results
providing analytical reconstruction formulas for a limited CST geometries.

With deep learning’s success in CT [9–12] and MRI [13, 14] reconstruction,
two main categories emerged: Post-processing methods like FBPConvNet [9]
and DuDoTrans [11] treat reconstruction as a denoising task. While effective in
addressing artifacts, they often struggle with global information recovery from
sparse data. Conversely, unrolling networks have emerged as an enticing tech-
nique for image reconstruction [15–21], treating it as an optimization task re-
sulting in an iterative algorithm like gradient descent, and subsequently unrolled
into a neural network to learn the regularization terms. However, unrolled net-
works face two primary challenges: firstly, the difficulty in capturing long-range
dependencies due to reliance on locally-focused regularization terms using CNNs;
secondly, unrolled networks consist of a cascade of network layers to mimic the
iterative reconstruction process, leading to high computational costs.

In this paper, we explore unrolling networks [22] efficiency for CST image
reconstruction. Furthermore, to mitigate memory and computational costs of
unrolling networks, we introduce UnWave-Net, a novel deep unrolled network
incorporating a wavelet-based regularization term. Our approach employs a dis-
crete wavelet transform on the input features [23, 24], decomposing them into
low-frequency (LL) and high-frequency (LH, HL, HH) components across four
sub-bands. The regularization term is specifically applied to the low-frequency
features, resulting in a significant reduction in learning and inference times while
preserving quality. To demonstrate the efficacy of UnWave-Net, we consider a
non-collimated circular CST (NCCCST) system, comprised of a source and sen-
sors positioned on a circular ring. The analytic inversion of the corresponding
Radon transform remains an open problem. We illustrate that the UnWave-Net
represents a compelling method for image reconstruction in NCCCST, achieving
state-of-the-art results in both training and inference speed, along with superior
performance in quantitative metrics. The main contributions of this paper are:
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1. UnWave-Net, a wavelet unrolled network for CST image reconstruction lever-
aging wavelet subbands’ dimensional reduction to expedite inference.

2. Achievement of state-of-the-art results in training and inference times, along
with superior quantitative performance through experiments conducted on
a CST modality, which lacks an inverse analytic formula for image recon-
struction.

2 Modelling of the Non-Collimated Circular CST

Object

NCCCST setup
Acquired data K=100

Reconstruction

Fig. 1. NCCCST setup. Left: the dotted circle represents the ring containing point-like
blue detectors Dk, with the red source S. Center: measured data. Right: reconstruction
using pseudo-inversion of the data exhibits severe artifacts.

The NCCCST system consists of a source S and K fixed uncollimated de-
tectors Dk,k∈{1,...K} placed on a radius of P/2 including the source. Detectors
are non-collimated and energy-resolved. The scanned object is within the ring,
and the source has a plate collimator confining photons to a plane, defining,
thus, a 2D scanning slice (see Fig. 1). NCCCST inherits advantages from its
predecessor CCST [4,5], such as non-moving components and a compact design.
First-order scattered photons recovered by a detector Dk at the same energy
E(ω) correspond to scattering sites on one of two circle arcs with S and Dk as
endpoints, subtending the angle (π− ω). An example of such a pair of scanning
arcs is depicted in Fig. 1. The data model considers only first-order scattering,
with higher orders treated as noise. Attenuation effects are neglected. In contrast
to CCST [5], NCCCST doesn’t determine if the scattering site lies on circle arc
A1 or A2 given a scattering angle ω.

In the following calculations, the source S is placed at the origin of the
coordinate system. Let f be a non-negative function with compact support inside
a disc of diameter P centred at O = (0,−P/2). The Radon-type model mapping
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f to its integrals over the family of double circular arcs A1 ∪ A2 is given by:

Rf(ω, βk) =

∞∫
−∞

[ βk+ω∫
βk

f(r, θ)K(ω, βk; r, θ)dθ +

βk∫
βk−ω

f(r, θ)K(−ω, βk; r, θ)dθ

]
dr, (1)

where K(ω, βk; r, θ) = ρ(ω, βk)δ(r − ρ(ω, βk) cos(θ − ϕ(ω, βk))) is a delta kernel
defining the scanning circle arcs with diameter ρ(βk, ω) = P cos

(
βk + π

2

)
/ sin (ω)

and relative angle ϕ(βk, ω) = βk + ω− π/2 to the x-axis. Variables are the scat-
tering angle ω, the angle subtended by the detector βk, and the polar variables
(r, θ). Function f represents the electronic density of the object and Rf(ω, βk)
is the data measured by detectors. An example of collected data is presented in
Fig. 1. Currently, neither inverse formulas nor inversion results are known for
the model on pairs of circles (Eq. 1). This is mainly due to the lack of shift
or rotational invariance in the direct operator, motivating our work to find a
solution for image reconstruction, i.e., the inversion of Eq. 1.

3 Methodology

3.1 Related Theories

Inverse Problem Formulation. NCCCST image reconstruction problem can
be mathematically formalized as the solution to a linear equation in the form of:

y = Ax, (2)

where x ∈ Rn represents the object to reconstruct (n = h × w), and y ∈ Rm

denotes the data (m = K × NE), where K is the number of detectors and NE

is the number of finite elements in the energy domain [E(π), E0]. A ∈ Rn×m

is the discrete forward model. The objective is to recover the object x from
the observed data y. Since CST image reconstruction deals with an ill-posed
inverse problem, pseudo-inversion is insufficient for qualitative reconstruction
(see Fig. 1). Iterative reconstruction algorithms are employed to minimize a
regularized objective function with an L2 norm constraint:

x̂ = arg min
x

J(x) =
λ

2
∥Ax− y∥22 + F(x), (3)

where F(x) is the regularization term. Initially, ill-posed problems were ad-
dressed using optimization techniques like the truncated singular value decom-
position (SVD) algorithm [25] or iterative approaches such as algebraic recon-
struction technique (ART) [26]. Additionally, techniques like total variation [27]
and Tikhonov regularization [28] can improve the reconstructions.

Deep Unrolling Networks. Assuming that F is differentiable and convex,
gradient descent can be used to solve Eq. 3:

xt+1 = xt − α(λA† (Axt − y) +∇xF(xt)), (4)
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where α is the step size (neglected for redundancy with the learned parameters),
and A† is the pseudo-inverse. Optimization limitations, like manual parameter
selection, are tackled by recent deep learning methods [17,21]. By allowing terms
in Eq. 4 to be iteration dependent, the gradient descent iteration becomes:

xt+1 = xt − λtA
† (Axt − y) + G(xt), (5)

where G is a learned mapping representing the gradient of the regularization
term. Finally, Eq. 5 is unrolled into a deep recurrent neural network to learn the
optimization parameters and the regularization term.
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Fig. 2. Overall structure of the proposed UnWave-Net for NCCCST reconstruction.
The method utilizes wavelet transform to reduce computational complexity.

3.2 The proposed UnWave-Net

Recent studies on unrolling networks have explored various representations of the
regularization term gradient (denoted as G in Eq. 5), from conv-nets [13,17, 29]
to attention-based networks [14,21]. As deep learning models grow in complexity,
the representation of the regularization term gradient becomes more computa-
tionally and memory-intensive [22]. To mitigate this, we introduce UnWave-Net,
a novel unrolling network that leverages the wavelet transform to represent the
regularization term gradient. Recently, the wavelet transform has been widely
used to reduce the complexity of deep learning models, such as diffusion prob-
abilistic models [23], or in NeRF models for generalizable, high-quality synthe-
sis [24]. Inspired by this, we apply a CNN layer to the input image xt ∈ Rh×w×1

at iteration t to obtain zt ∈ Rh×w×c feature map, which is then transformed into
wavelet coefficients wt ∈ Rh

2 ×
w
2 ×4·c. The LL-frequencies undergo Swin Trans-

former processing [30] to capture long-range dependencies, while the HL, LH,
and HH frequencies remain unchanged. After inverse wavelet transformation, the
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new feature map ft ∈ Rh×w×c is concatenated with zt to yield final feature map
z′
t = cat(zt,ft) ∈ Rh×w×2·c. Lastly, z′

t passes through a CNN layer to produce
the regularization term gradient G(xt) ∈ Rh×w×1. The overall architecture of
the proposed UnWave-Net is depicted in Fig. 2. The network takes as inputs the
acquired data y and the corresponding pseudo-inverse reconstruction A†y. It
consists of T iterations, each incorporating a wavelet regularization term.

Gound Truth

U-Net DuDoTrans

LPD LEARN RegFormer UnWave-Net (ours)

TV

PSNR/SSIM 30.33/92.15 30.21/93.43 30.85/93.45 30.96/93.66

17.80/16.90 24.26/77.04 26.27/81.70 24.03/65.39

Fig. 3. Visual comparison with noisy data and K = 100. The cropped region highlights
the superior artifact supression of our UnWave-Net compared to RegFormer.

4 Experiments

4.1 Experimental Setup

Dataset and Evaluation metrics. We evaluate our method on the AAPM
dataset [31], consisting of 2378 full-dose CT images with 3mm thickness from 10
patients. In line with standard practices [11, 17, 21], we employ peak signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM) for quanti-
tative evaluation.

Implementation and Training details. The AAPM dataset is divided into
1920 training images from 8 patients, 244 validation images from 1 patient,
and 214 test images from the remaining patient, all resized to 256 × 256. The
considered NCCCST is made of K ∈ {100, 150} detectors of energy resolution
∆E = 0.0016 MeV. The source is assumed to be mono-energetic of energy E0 =
0.3 MeV. The forward operator is simulated by discretizing Eq. 1. To mimic
real-world CT scanning, mixed noise is applied to the acquired data, comprising
5% Gaussian noise and Poisson noise with an intensity of 1×106. Model training
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involves 50 epochs using 4 Nvidia Tesla V100 GPUs (32GB RAM). The AdamW
optimizer [32] with a learning rate of 1 × 10−4 and weight decay 1 × 10−2 is
used, along with MSE loss and a batch size of 1. A learning rate decay factor
of 0.1 is applied after 40 epochs. The unrolling iterations for UnWave-Net are
set to T = 16, and a Haar wavelet transform with a feature map depth of 48 is
employed for regularization. The sizes of the convolution kernel are 5 × 5. For
the SwinT model, a window size of 8 and a depth of 2 are utilized.

State-of-the-art baselines. We compare UnWave-Net with Chambolle-Pock’s
algorithm using a handcrafted total variation (TV) regularizer and several state-
of-the-art CT reconstruction models: (1) post-processing methods, namely U-
Net [9] and DuDoTrans [11]; (2) deep unrolling networks, including LPD [15],
LEARN [17], and RegFormer [21]. It is important to note that the FBP operators
in these methods are replaced by pseudo-inverse reconstruction due to the lack
of an analytical solution for the NCCCST problem. To ensure fair comparison,
we use authors’ code or meticulously implement methods based on their papers.

Table 1. Quantitative evaluation on AAPM of state-of-the-art methods (PSNR in dB
and SSIM in %). Bold: Best, under: second best.

Method
No noise With noise

K = 150 K = 100 K = 150 K = 100

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

Pseudo-inverse 19.52 21.90 18.21 17.26 19.43 21.44 18.17 17.08
TV 26.61 80.56 25.33 78.31 26.54 80.51 25.27 78.19
U-Net [9] 28.32 83.59 27.14 81.47 28.03 83.93 27.36 82.58
DuDoTrans [11] 29.16 81.96 27.32 80.08 28.99 81.46 27.36 79.74
LPD [15] 32.07 94.05 31.48 92.86 31.43 92.72 31.40 91.83
LEARN [17] 31.92 95.11 31.90 94.08 31.63 93.66 32.16 92.95
RegFormer [21] 32.45 95.02 32.54 94.22 32.11 93.80 31.83 92.98

UnWave-Net (ours) 32.86 95.12 32.73 94.18 32.48 93.91 32.44 93.07

4.2 Comparison with state-of-the-art methods

Quantitative and Visual comparisons. We evaluate our model against state-
of-the-art baselines with two detector counts, K ∈ {100, 150}, under noise-free
and noisy conditions. Table 1 summarizes the results. UnWave-Net consistently
outperforms all baselines, including RegFormer, with an average improvement of
(+0.03% SSIM, +0.3 dB PSNR) and (+0.1% SSIM, +0.49 dB PSNR) for noise-
free and noisy data, respectively. Visual results in Fig. 3 show that while U-Net,
DuDoTrans, and LPD produce blurry images with artifacts, and RegFormer and
LEARN lack detail in the lung and aorta, UnWave-Net consistently generates
detailed, high-quality images.
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Efficiency comparison. The results in Table 2, conducted on one V100 GPU,
show that UnWave-Net is computationally more efficient than gradient descent-
based unrolling networks, outperforming LEARN and RegFormer with speedups
of 1.36× and 1.31×, respectively. Moreover, UnWave-Net utilizes less memory
than RegFormer, reducing memory usage by 1.13×, approaching the efficiency of
LPD. Additionally, our method requires only 16 unrolling iterations compared to
30 for LEARN and 18 for RegFormer, all while achieving superior performance.

Table 2. Efficiency comparison of state-of-the-art methods with K = 100.

Method Unrolled #Iters Epoch time (s) #Params (M) Memory (GB) Inference time (ms)

TV ✗ 500 - - - 5600
U-Net [9] ✗ - 80 31.1 3.94 12.7
DuDoTrans [11] ✗ - 115 15.0 3.80 27.5
LPD [15] ✓ 10 370 0.25 3.63 86.4
LEARN [17] ✓ 30 1600 3.50 3.64 305
RegFormer [21] ✓ 18 1710 4.84 4.22 294

UnWave-Net (ours) ✓ 16 1270 2.80 3.72 224

4.3 Ablation Study

To assess how the number of unrolling iterations affects UnWave-Net’s perfor-
mance, we conducted an ablation study on the AAPM dataset with K = 100.
Fig. 4a and Fig. 4b illustrate that even with T ≤ 16, UnWave-Net achieves
higher PSNR and SSIM metrics compared to RegFormer and LEARN. This
underscores the effectiveness of UnWave-Net over other gradient descent-based
unrolling networks. Additionally, UnWave-Net exhibits significantly lower time
costs than RegFormer and LEARN, as shown in Fig. 4c, even when T = 20.
This showcases the efficiency of our method in terms of inference time.

(a) PSNR (dB) vs #Iters (a) SSIM (%) vs #Iters (a) Time (ms) vs #Iters

Fig. 4. Ablation on the number of unrolling iterations. Quantitative and efficiency
comparisons of our UnWave-Net against RegFormer and LEARN.
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5 Conclusion

In this paper, we present UnWave-Net, a wavelet-based deep unrolled network
tailored for CST imaging. Through extensive experimentation on a stationary
CST system with circular geometry (i.e., NCCCST), UnWave-Net demonstrates
superior performance in both image quality and reconstruction speed, position-
ing it as a state-of-the-art solution in this domain. Notably, our study underscores
the adaptability and effectiveness of established unrolling networks in address-
ing novel imaging challenges, showcasing their versatility and broad applicability.
Moreover, we emphasize the practical advantage of UnWave-Net’s robustness to
noisy data, enhancing its feasibility in real-world scenarios. We envision UnWave-
Net as a promising method for CST imaging with potential extensions to other
imaging modalities. Nonetheless, it is essential to acknowledge that our approach
inherits the inherent drawback of deep unrolled networks, particularly in terms of
prolonged training time compared to post-processing methods. Future research
efforts will focus on addressing these limitations.

Limitations and 3D Extension. Our model focuses on first-order scattering
and treats higher-order scattering as noise, leading to potential information loss.
It also does not fully account for matter attenuation and source/sensor imperfec-
tions. Extending CST to 3D involves a fixed source and moving detector, leading
to a toric Radon transform. Ongoing work aims to resolve these challenges.

Disclosure of Interests. Ishak Ayad has received research grants from DIM Math
Innov and CYG, funded by the French ANR under the French government grant.
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