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Abstract. Right Heart Catheterization is a gold standard procedure
for diagnosing Pulmonary Hypertension by measuring mean Pulmonary
Artery Pressure (mPAP). It is invasive, costly, time-consuming and car-
ries risks. In this paper, for the first time, we explore the estimation of
mPAP from videos of noninvasive Cardiac Magnetic Resonance Imaging.
To enhance the predictive capabilities of Deep Learning models used for
this task, we introduce an additional modality in the form of demographic
features and clinical measurements. Inspired by all-Multilayer Perceptron
architectures, we present TabMixer, a novel module enabling the integra-
tion of imaging and tabular data through spatial, temporal and channel
mixing. Specifically, we present the first approach that utilizes Multilayer
Perceptrons to interchange tabular information with imaging features in
vision models. We test TabMixer for mPAP estimation and show that it
enhances the performance of Convolutional Neural Networks, 3D-MLP
and Vision Transformers while being competitive with previous modules
for imaging and tabular data. Our approach has the potential to improve
clinical processes involving both modalities, particularly in noninvasive
mPAP estimation, thus, significantly enhancing the quality of life for in-
dividuals affected by Pulmonary Hypertension. We provide a source code
for using TabMixer at https://github.com/SanoScience/TabMixer.
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1 Introduction

Pulmonary Hypertension (PH) is a severe disease characterised by elevated pres-
sure in the Main Pulmonary Artery. The gold standard for detecting PH is Right
Heart Catheterization (RHC), an invasive procedure enabling the assessment of
pulmonary circulation characteristics including mean Pulmonary Artery Pres-
sure (mPAP), cardiac output, or stroke volume. PH is diagnosed when mPAP

https://github.com/SanoScience/TabMixer
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exceeds 20 mmHg [12]. Regrettably, as an invasive procedure, RHC is prone
to complications as well as it requires specialized equipment, trained staff and
patient preparation. As a consequence, researchers have adopted Machine Learn-
ing (ML) models to diagnose PH from demographics data [16], measurements
from cardiac computed tomography [14], physics-based models parameters [19]
and Magnetic Resonance Imaging-derived (MRI) measurements [1,9,24]. In this
study, we take a new route and we explore the potential of estimating mPAP
directly from Cardiac MRI (CMR) videos of one cardiac cycle collected at two
planes: 4 Chamber (4CH) and Short-Axis (SA) using Deep Learning.

In recent years, 3D Convolutional Neural Networks (CNNs) [3,28] and Vision
Transformers [2,17] were the go-to standard for video processing. More recently
the emergence of Multi-layer Perceptrons (MLP)-based models [5,26,27] has led
to the development of their 3D counterparts [23]. In the medical domain, the
common approach of collecting imaging and tabular data resulted in the intro-
duction of fusion methods. Traditional methods involve concatenating tabular
features in the network’s final layers [13], but this restricts the knowledge transfer
with imaging data. To enhance the interaction between imaging and tabular data
Duanmu et al. [7] proposed a method in which imaging features are channel-wise
multiplied with tabular data at different stages of CNN. Pölsterl et al. [22] intro-
duced Dynamic Affine Feature Map Transform (DAFT) module, an extension
of the Feature-wise Linear Modulation (FiLM) [21] layer for scaling and shifting
feature maps based on tabular data. Grzeszczyk et al. [10] proposed TabAtten-
tion, a module for learning channel, spatial and temporal attention conditioned
on tabular data. In this work, we enhance the predictive capabilities of imaging
models by introducing tabular data in the form of demographic features and
measurements from MRI (e.g. right ventricular ejection fraction).

Traditionally, MLPs were used for tabular data processing and more recently
for image analysis, however, no approach combines both modalities. Inspired by
all-MLP architectures, we present TabMixer, a novel module facilitating the mix-
ing of tabular data with imaging features. TabMixer enriches the video process-
ing backbones by enabling interaction between tabular embeddings and imaging
features across spatial, temporal and channel dimensions. Unlike convolutional
or self-attention-based methods, TabMixer relies solely on MLPs, allowing the
fusion of information stored in tabular data with imaging features during spatial,
temporal and channel mixing. We evaluate TabMixer integrated with different
backbones (CNNs, Transformer, all-MLP) on the mPAP prediction task and
show its competitiveness with existing methods. Our contributions are three-
fold: (1) we introduce TabMixer, a first module akin to MLP designed for the
integration of imaging feature maps with tabular data, (2) we provide a com-
prehensive evaluation and comparison of methods that utilize imaging and/or
tabular data for predicting mPAP, and (3) to our knowledge, this is the first
demonstration of noninvasive mPAP estimation directly from CMR videos. In
addition, we present a comparative analysis of the 4 Chamber (4CH) and Short-
Axis (SA) planes for this estimation.
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Fig. 1. The overview of the proposed TabMixer. TabMixer applies mixing operations
over spatial, temporal and channel dimensions. Leveraging MLPs, TabMixer can inter-
change information between imaging and tabular features.

2 Method

In this section, we introduce the building blocks of the TabMixer module. We
present the rationale behind employing MLP architecture for imaging and tabu-
lar data. Finally, we describe the integration of TabMixer with vision backbones.

The overview of TabMixer is presented in Fig. 1. Let X0 ∈ R1×T0×H0×W0

denote the grayscale CMR video comprising T0 frames with H0 height and W0

width. The vision backbone generates intermediate temporal feature maps X ∈
RC×T×H×W where C is the number of channels. TabMixer refines these temporal
feature maps through spatial, temporal and channel mixing with the aid of
tabular data Tab ∈ RD. We follow the architectural principles of all-MLP and
Transformer networks in the design of this module [29].

Initially, to reduce dimensionality and the number of parameters, the interme-
diate temporal feature maps X are embedded via average pooling and reshaping

operations into a features cube X ′ ∈ RC×T×S where S is (H×W )
4 . This structure

of X ′ enables the interchange of spatial, temporal and channel information with
tabular data via three sub-layers Ls, Lt and Lc, sequentially operating across
every dimension. Each Li component comprises an Affine transformation, MLPi

layer and a skip-connection followed by permutation operation to facilitate pro-
cessing over the next dimension. Finally, the processed features are reshaped and
linearly upsampled back to the input shape, thereby returning refined temporal
feature maps integrated with tabular information.

Mixing with Multi-Layer Perceptron. In many networks, a normalization
layer precedes model-specific layers (e.g. attention) to stabilize training. Inspired
by [27], instead of Layer Normalization, we perform Affine transformation in Li,
to rescale and shift inputs element-wise without depending on batch statistics:

Affα,β(X ′) = Diag(α)X ′ + β (1)
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After the affine transformation, the three-dimensional cube is processed with
MLPi block consisting of two MLP layers and GELU [11] activation:

Y = MLPi,2(GELU(MLPi,1(Z))) (2)

Here Z is the input to the MLPi and Y is the output of the same size. The
MLPi block enables mixing information across the input’s last dimension and is
shared across all vectors in this dimension as in [26]. The first MLP compresses
the last dimension by a factor of two to create a bottleneck, while the second
MLP expands it back to the initial size (as shown in Fig. 1). Subsequently, we
employ the skip connection with the Li input. As MLPi+1 operates on different
dimension, the final operation within Li entails axis permutation. The overall
dimensionality evolves in TabMixer as follows:

input

RC×T×H×W→
Ls

RC×T×S→
Lt

RC×S×T→
Lc

RS×T×C→
output

RC×T×H×W (3)

Tabular data within TabMixer. To incorporate tabular information within
spatial, temporal and channel processing we embed tabular data with MLPtab

(Tab ∈ RD → Tab′ ∈ RD) duplicating the structure of MLPi blocks. Inspired
by the use of MLPs in tabular Deep Learning models and all-MLP networks for
vision, we concatenate tabular embedding with the X ′ features cube before pro-
cessing it via MLPi. This concatenation involves repeating tabular embedding
over the first and second axes of X ′, augmenting the input to MLPi by D values
from tabular embedding (e.g. RC×T×S+D for MLPs). This approach enables the
fusion of tabular features with imaging ones across all dimensions, as shown in
Fig. 1. The processing of feature maps with tabular data can be expressed as:

TabMixer(X,Tab) = U(Lc(Lt(Ls(R(X), Tab′), Tab′), Tab′))

Tab′ = MLPtab(Tab)
(4)

Here, R and U denote the reshaping with pooling and upsampling for simplic-
ity. The design of TabMixer enables its integration with networks based on a
hierarchical structure (e.g. ResNet-18, 3D-MLP) yielding intermediate feature
maps.

3 Experiments and results

This section describes the PH dataset used for mPAP estimation and outlines
the implementation details of TabMixer. We benchmark our method against
various state-of-the-art modules and compare its performance with imaging-only
and tabular-only ML and Deep Learning models. Additionally, we conduct an
ablation study and demonstrate the importance of TabMixer’s main components.
Dataset. This study was approved by the Ethics Committee. The dataset em-
ployed comprises 1821 CMR studies (3642 videos of SA and 4CH planes) matched
with invasively measured mPAP and is part of the ASPIRE Registry (Assessing
the Severity of Pulmonary Hypertension In a Pulmonary Hypertension REferral
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Fig. 2. Short-Axis (top) and corresponding 4 Chamber (bottom) frames from CMR
depicting a cardiac cycle from left to right.

Centre) [15]. It contains data from 1708 patients (1045 females and 663 males,
64 ± 14 years old) suspected of PH who underwent both MRI and RHC within
48 hours (some patients had repeated the procedures over the years). To ensure
a fair comparison across planes and methods based on tabular data we extract
data samples from the ASPIRE Registry containing SA and 4CH CMR videos,
and select tabular features (demographics and measurements from MRI) with no
more than 200 empty values. We remove data samples without tabular features.
The MRI videos, capturing one cardiac cycle (up to 50 frames) were acquired
during a breath hold in the supine position, utilizing devices from various ven-
dors, including GE, Philips and Siemens. Exemplary frames from corresponding
SA and 4CH planes are shown in Fig. 2.

Implementation details. We implement all Deep Learning models using Py-
Torch and train them on NVIDIA A100 80 GPU for 100 epochs. To minimize
the Mean Squared Error loss of the mPAP prediction we use AdamW optimizer
[18] with a cosine annealing rate scheduler. An initial learning rate is set to
1× 10−4, L2 regularization to 1× 10−5 and batch size to 8. We split the dataset
into training, validation and testing sets with 1299, 217 and 305 samples respec-
tively, ensuring that each patient’s data is present in only one set. We stratify
the split based on the four mPAP bins (≤ 20 mmHg, ≤ 25 mmHg, ≤ 30 mmHg,
> 30 mmHg). We resample the pixel spacing of all frames to 0.9375 mm ×
0.9375 mm, pad them to 512x512 pixels (the maximum frame size in the dataset)
and resize entire videos to 192x192 pixels with 16 frames. During training, we
apply data augmentation methods, including translation, rotation, contrast ad-
justment, gaussian noise, intensity scaling and shifting. We one-hot categorical
tabular features and standardize the numerical ones to a mean value of 0 and a
standard deviation of 1. We retain tabular features exhibiting statistical signifi-
cance measured with f-regression [20] and evaluate the performance in estimating
mPAP using Mean Absolute Error [mmHg] (MAE), Root Mean Squared Error
[mmHg] (RMSE) and Mean Absolute Percentage Error [%] (MAPE). Due to
space limitations, we present mean results here, while standard deviations and
the description of 29 tabular features are in the supplementary material.
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Table 1. The performance of imaging (I.) and/or tabular (T.) methods. We highlight
best and underline second MAE [mmHg], RMSE [mmHg], MAPE [%]. We indicate
the statistically significant difference (two-tailed paired t-test p-value < 0.01) with
TabMixer over the baseline on both 4CH and SA planes with *.

Method I. T. MAE RMSE MAPE MAE RMSE MAPE

LR [20] ✗ ✓ 8.50 11.01 23.35 − − −
MLP[20] ✗ ✓ 8.25 10.87 22.51 − − −
Trompt [4] ✗ ✓ 8.12 10.61 22.38 − − −
XGBoost [6] ✗ ✓ 7.82 10.11 21.84 − − −
ResNettab [8] ✗ ✓ 7.65 9.96 21.10 − − −
FT-Transformer [8] ✗ ✓ 7.62 10.03 20.89 − − −
GBDT [20] ✗ ✓ 7.58 9.78 20.85 − − −
RF [20] ✗ ✓ 7.47 9.61 20.97 − − −

Short-Axis 4 Chamber

Video Swin [17] ✓ ✗ 11.65 14.10 34.82 12.01 14.47 36.21
+ Concat ✓ ✓ 10.09 12.34 29.99 10.17 12.43 30.53
+ FiLM [21] ✓ ✓ 7.98 10.42 22.62 8.10 10.43 22.80
+ DAFT [22] ✓ ✓ 11.88 14.41 36.64 8.09 10.51 22.96
+ TabAttention [10] ✓ ✓ 8.02 10.38 23.07 8.60 11.11 25.12
+ TabMixer* ✓ ✓ 7.86 10.22 22.25 7.92 10.34 22.30

MLP-3D [23] ✓ ✗ 11.84 14.24 35.72 12.04 14.51 36.09
+ Concat ✓ ✓ 9.59 11.97 27.87 10.23 12.45 30.13
+ FiLM [21] ✓ ✓ 8.13 10.67 22.62 8.01 10.54 22.28
+ DAFT [22] ✓ ✓ 11.41 13.83 33.48 8.95 11.54 24.51
+ TabAttention [10] ✓ ✓ 8.29 10.62 24.55 8.48 10.72 24.48
+ TabMixer* ✓ ✓ 7.80 10.20 22.02 7.97 10.32 22.76

ResNetDAFT [22] ✓ ✗ 12.09 14.53 35.48 12.24 14.67 34.91
+ Concat ✓ ✓ 10.50 12.82 31.97 9.79 11.81 28.93
+ FiLM [21] ✓ ✓ 8.24 10.69 23.38 8.07 10.67 22.41
+ DAFT [22] ✓ ✓ 8.25 10.98 22.06 7.87 10.51 22.10
+ TabAttention [10] ✓ ✓ 8.54 11.19 23.65 8.26 10.83 23.29
+ TabMixer* ✓ ✓ 7.82 10.22 22.04 7.68 10.24 21.50

ResNet-18 [28] ✓ ✗ 7.85 10.21 21.71 8.05 10.47 23.34
+ Concat ✓ ✓ 7.22 9.36 19.92 8.05 10.43 22.74
+ FiLM [21] ✓ ✓ 9.05 11.63 24.58 8.91 11.44 24.40
+ DAFT [22] ✓ ✓ 8.93 11.53 25.43 8.14 10.39 23.00
+ TabAttention [10] ✓ ✓ 7.92 10.03 22.77 7.72 9.85 21.76
+ TabMixer ✓ ✓ 7.56 9.94 21.57 7.53 9.91 21.75

I3D [3] ✓ ✗ 7.21 9.39 19.11 8.07 10.29 23.05
+ Concat ✓ ✓ 7.56 9.72 20.76 7.86 9.83 20.86
+ FiLM [21] ✓ ✓ 8.53 11.11 22.48 9.10 11.66 24.34
+ DAFT [22] ✓ ✓ 7.18 9.25 19.21 7.74 9.83 20.56
+ TabAttention [10] ✓ ✓ 7.34 9.49 21.34 7.77 9.76 21.98
+ TabMixer* ✓ ✓ 6.66 8.64 18.90 7.19 9.31 20.01
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Table 2. The ablation study of the key components of the proposed TabMixer. The
first row is the baseline I3D model. The next rows refer to I3D combined with TabMixer
without tabular data or one of the mixing components and the last row is full TabMixer.

Method I. T. MAE RMSE MAPE

I3D [3] ✓ ✗ 7.21 ± 6.01 9.39 19.11 ± 19.62
+ TM w/o tabular data ✓ ✗ 7.17 ± 5.71 9.17 19.97 ± 22.84
+ TM w/o channel mixing ✓ ✓ 7.08 ± 5.73 9.11 19.80 ± 22.72
+ TM w/o spatial & temporal mixing ✓ ✓ 7.01 ± 6.01 9.24 19.07 ± 20.00
+ TM w/o spatial mixing ✓ ✓ 7.00 ± 5.78 9.08 19.11 ± 20.12
+ TM w/o temporal mixing ✓ ✓ 6.89 ± 5.83 9.02 19.60 ± 21.72
+ TabMixer (TM) ✓ ✓ 6.66± 5.51 8.64 18.90± 20.83

Comparison with state-of-the-art methods. To compare TabMixer with
several methods for imaging and tabular data (Concatenation, FiLM [21], DAFT
[22], TabAttention [10]) we use five vision backbones: 3D CNNs (ResNet-18 [28],
I3D [3], ResNetDAFT [22]), Transformer (Video Swin Transformer [17]) and all-
MLP network (MLP-3D [23]). In all backbones, we insert tabular modules before
the global average pooling layer. We conduct the mPAP prediction on SA and
4CH planes to find the better one for this task. Additionally, we test the perfor-
mance of mPAP estimation by methods based solely on tabular data. We exper-
iment with Deep Learning models (Trompt [4], ResNettab [8], FT-Transformer
[8], MLP) and ML - Linear Regression (LR), XGBoost [6], Gradient Boosting
Decision Trees (GBDT), Random Forest (RF). Results are presented in Table
1. RF is the best-performing tabular-only method with MAE of 7.47 ± 6.05,
while I3D trained on the SA plane achieves the lowest error out of imaging-only
methods (7.21 ± 6.01). TabMixer outperforms all modules when tested on the
4CH plane and has the best results for four out of five vision backbones on the
SA plane (the improvement over the four baselines on both planes is statistically
significant with a p-value below 0.002). Notably, the combination of I3D with
TabMixer and SA plane reaches the lowest error with MAE of 6.66 ± 5.51.
Ablation study. We conduct ablation experiments to validate the key com-
ponents of TabMixer (Table 2). We perform validation of our proposed method
when integrated with the I3D model. The incorporation of spatial, temporal and
channel mixing components provides the lowest prediction error. Conversely, re-
moving any of those blocks or tabular data mixing increases the error while still
retaining performance gain over the baseline I3D.

4 Discussion and Conclusions

To the best of our knowledge, we are the first to directly estimate mPAP from
CMR videos. Notably, our analysis indicates the superiority of the SA plane over
4CH in predicting mPAP which is the same CMR plane used for estimation of
ejection fraction or stroke volume. Inspired by prior works combining imaging
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Table 3. The parameters count and inference time of modules assuming feature maps
shape from the I3D (1024, 4, 6, 6 - C, T, H, W) and the number of tabular features of
29. We also provide measures for TabMixer without channel mixing (TM w/o CM).

Method FiLM DAFT TabAttention TabMixer TM w/o CM

Params [M] 0.015 0.022 0.202 1.070 0.001

Inference time [ms] 0.04 0.35 7.57 1.41 0.97
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Fig. 3. The comparison of resistance to noisy imaging (left), tabular (middle) data
and both (right). We compare the performance of I3D+TabMixer and the second best-
performing method I3D+DAFT.

and tabular data, as well as all-MLP networks, we introduced TabMixer - a mod-
ule for combining CMR and tabular data in 3D networks. TabMixer enhances
the predictive capabilities of all investigated networks. It worked best with the
I3D model (the improvement over the baseline is statistically significant with
p-value≈0.002). However, while other methods exhibited improvement, they did
not surpass the RF method. RF outperformed Deep Learning methods for tabu-
lar data like Trompt or FT-Transformer which is consistent with the challenges
Deep Learning models face in effectively leveraging tabular data [25]. This high-
lights the importance of the right combination of the vision backbone and tabular
module to the task.

To better understand the impact of imaging and tabular data, we experiment
with noisy data applied to two best-performing methods I3D+TabMixer and
I3D+DAFT. As shown in Fig. 3, both methods exhibit resilience to noise in
tabular data with I3D+TabMixer showcasing greater robustness to noisy videos
owing to its superior representation learning facilitated by tabular and imaging
data mixing.

Our method exhibits certain limitations. Firstly, it was not tested on the ex-
ternal dataset and to prove its generalizability, further study is needed. Secondly,
we experimented with estimations based on single CMR planes. The combina-
tion of both 4CH and SA videos could yield an additional improvement in the
quality of predictions. Finally, TabMixer is not a lightweight module, due to the
extensive use of MLP layers. As the spatial, temporal, and channel dimensions
increase, the number of trainable parameters within the MLP layers escalates
quadratically. For example, for I3D and 1024 channels in the final temporal fea-
ture maps the number of trainable parameters of TabMixer is higher than those
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of FiLM or DAFT as shown in Table 3. However, TabMixer without channel mix-
ing has much less trainable parameters but also outperforms all other modules
in terms of MAE and RMSE as presented in the ablation study (Table 2).

In summary, this paper addresses the challenge of noninvasive mPAP estima-
tion. We have introduced the TabMixer module, which facilitates the integration
of tabular and imaging data. To our knowledge, this represents the first appli-
cation of MLP models to merge these two data modalities. Our approach holds
considerable promise for clinical workflows, particularly in mPAP estimation.
By offering a noninvasive alternative, it has the potential to transform the field,
conceivably obviating the need for high-risk invasive RHC procedures.
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