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Abstract. Advances in neuroimaging have dramatically expanded our
ability to probe the neurobiological bases of behavior in-vivo. Leverag-
ing a growing repository of publicly available neuroimaging data, there is
a surging interest for utilizing machine learning (ML) approaches to ex-
plore new questions in neuroscience. Despite the impressive achievements
of current deep learning models, there remains an under-acknowledged
risk: the variability in cognitive states may undermine the experimental
replicability of the ML models, leading to potentially misleading findings
in the realm of neuroscience. To address this challenge, we first dissect
the critical (but often missed) challenge of ensuring the replicability of
predictions despite task-irrelevant functional fluctuations. We then for-
mulate the solution as a domain adaptation, where we design a dual-
branch Transformer with minimizing Wasserstein distance. We evaluate
the cognitive task recognition accuracy and consistency of test and retest
functional neuroimages (serial imaging measures of the same cognitive
task over a short period of time) of the Human Connectome Project.
Our model demonstrates significant improvements in both replicability
and accuracy of task recognition, showing the great potential of reliable
deep models for solving real-world neuroscience problems.

Keywords: Functional MRI · Model Replicability · Cognitive Task Recog-
nition

1 Introduction

A crucial challenge in the field of neuroscience is to comprehend the emergence
of cognition and behavior because of brain activity [18]. The technique of func-
tional magnetic resonance imaging (fMRI) offers a non-invasive method to ob-
serve cerebral blood flow changes, which correlate with brain activity [14]. In
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addition, the vast repository of publicly available functional neuroimaging data
presents opportunities to identify potential imaging biomarkers and uncover new
neurobiological pathways through deep learning methodologies [25, 11].

In the wake of the success of Transformers in NLP and CV [24], they also
have shown significant advancements in interpreting neural activities from fMRI
BOLD signals [5]. This entails recognizing cognition-specific spatiotemporal pat-
terns within extensive neuroimaging datasets [3, 26, 23]. For instance, fused win-
dow transformers [3] trained on BOLD time series data can classify seven cog-
nitive tasks from the HCP-task dataset [1].

Time

Fig. 1: Challenge of learning replicabil-
ity in functional neuroimaging studies.
Top: Test and retest fMRI scans (from
HCP). Bottom: The feature represen-
tations on test (in orange) and retest
fMRI (in blue) manifest distinct distri-
butions on one example of the cogni-
tive tasks.

Real-World Challenges of Machine Learning in Cognitive Neuro-
science. The human brain is a complex network that undergoes continuous
functional fluctuations over time [2]. Increasing evidence suggests that these
transient states are fundamental to the dynamic nature of our cognitive func-
tions. In scientific researches, it is crucial to ensure replicable findings across
repeated experiments, yielding statistically consistent results for the same sub-
ject under identical conditions [27]. However, the concept of test-retest relia-
bility—the consistency of successive measurements under unchanged conditions
[16]—remains insufficiently integrated into the development and evaluation of
new deep learning models in neuroscience. For example, the application of the
well-known BERT to fMRI data [23] lacks evaluation of task prediction reliabil-
ity on retest data, this oversight may undermine the reliability of findings crucial
for valid scientific conclusions in neuroimaging studies.

Exploring the issue further, we delve into the origins of variability, observing
the different feature distributions that stem from differences between subjects’
brain functions, which are influenced by biological factors [22] like neural oscilla-
tion, and fluctuations within the same subject due to previous cognitive activities
(the order of multiple pre-designed cognitive tasks varies between test and retest
scans). The issue of model replicability is illustrated in Fig.1, where we attempt
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Fig. 2: Left: The ACC curves of task recognition on scan 2 by model exclusively
trained on scan 1 (in blue) and model trained on a mixed dataset including both
scan 1 and scan 2 (in orange). Right: The ROC curve of adversarial validation
between scan 1 and scan 2.

to account for external factors that could sway brain activity readings, such as
the state of the participant when applied to the real-world neuroscience studies.

Why did the current deep models fail on test/retest replicability?
Our results (Fig.2 left) display the task recognition results on real fMRI data,
analyzed by a Transformer model trained solely on the test data, yet it under-
performs when predicting on the retest data, as illustrated by the blue curve.

We surmise that this limited generalizability might result from overlooking
the variability in functional brain dynamics within subjects across diverse cog-
nitive tasks. To investigate it, we employ adversarial validation technique [9] to
discern differences between test and retest data. We use a binary classifier to
determine if the sample belongs to test or retest data. The high performance
of adversarial validation (AUC=0.9881, ACC=0.9129 in Fig.2 right) indicates
the disparate distributions between the two datasets. One potential solution for
that involves training the models on a mixed dataset including test and retest
to capture more diverse features. This approach, as shown by the orange curve
in Fig.2 left, notably enhances prediction accuracy for both datasets. However,
supervised learning requires corresponding labels, limiting applicability to new,
unlabeled datasets.

Building upon the concept of domain adaptation [17, 4, 8], we propose a novel
dual-branch transformer with minimizing Wasserstein distance tailored for func-
tional neuroimaging. This model integrates the alignment of distributions with
the feature representations learning within an end-to-end framework. This strat-
egy is designed to bolster the model’s replicability of cognitive task recognition
agnostic for biological (external) factors across different fMRI scans.

2 Method

Model Overview. Within the framework of domain adaptation, the goal is to
craft a model that, once trained on the source domain (S), demonstrates accurate
predictions for the target domain (T ). The focus is therefore on model’s ability
of learning task-specific and domain-invariant feature representations through
the lens of unsupervised classification on retest data.
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Suppose we partition the brain into N regions. Then we extract the average
BOLD signal in each region over time t, denoted by xt

n(n = 1, ..., N). Following
the definition in [3], we consider the snapshot xt = [xt

1, x
t
2, ..., x

t
N ] as a vector that

expresses the whole-brain neural activity at time t. Since each task is scheduled
for a certain time period, we assign a label lm(m = 1, ...,M) of cognitive task
for each time segment of BOLD snapshots x = [xt|t = 1, ..., Γ ]4. Thus, BOLD
segments dissembled from the test fMRI data form the source domain XS where
each time segment of BOLD is associated with cognitive task labels. On the
other hand, BOLD segments extracted from the retest fMRI data form the target
domain XT , where the task label for each segment x is unknown.

The network architecture of our approach is depicted in Fig.3, showcasing an
end-to-end domain adaptive transformer.

Token embedding for BOLD snapshots. First, we project each vector of
BOLD snapshot xt to a latent subspace with a manageable dimension d through
a fully connected (FC) layer f . Then, we tokenize each projected task segment
by:

Embedding(x) = concat(xcls(m), f [xt|t = 1, ..., Γ ]), (1)

where the BOLD snapshot segment x is associated with a task label lm. We fur-

ther incorporate positional encoding (PE) [24] as:
−−→
PEi

t =

{
sin(ωk, t), i = 2k

cos(ωk, t), i = 2k + 1

into the embedding process by element-wise adding (
⊕

) as shown in the bottom
of Fig.3, where t is the position of each time point, and ωk = 1

100002k/d depends
on the k and the output dimension d of the FC layer f in Eq.1. It allowed us
to encode the relative position of the temporal heuristics, effectively enabling
the Transformer to grasp essential positional information from the BOLD time
series. This encoding method eliminates the need for learning extra parameters,
speeding up calculations and improving efficiency.
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Fig. 3: Network architecture of our
replicable deep model. It extends
the traditional transformer frame-
work to take the intra-subject
functional fluctuations into ac-
count by (1) a fMRI-specific to-
ken embedding mechanism, (2) the
dual-branch framework, and (3)
wasserstein loss function for do-
main adaptation between test and
retest fMRI scans.

4 To simply the problem, we assume each multi-session fMRI scan has been clipped
into a collection of task-specific segments based on the pre-defined task schedules.
Also, we assume that each segment of BOLD snapshots has equal length of time Γ .
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Dual-branch Transformer by Minimizing Wasserstein Distance be-
tween Two Domains. In the schematic presented in Fig.3, depicted within a
large grey area, it introduces a dual-branch framework that alternates between
self-attention [24] encoders of the source domain and target domain within sev-
eral iterations. This architecture aimed at fostering a robust exchange of infor-
mation and developing a nuanced inter-domain contextual understanding while
reducing dependency across two domains.

To align the distributions of two domains, we seek to minimize the Wasser-
stein distance between the feature representations of the source and target do-
mains. In the context of our model, the Wasserstein distance is employed to
evaluate the alignment between output features—referred to as classification to-
ken of each sample—generated by each layer from both domains. Since linear
ground distance is usually more robust to outliers and noise than a quadratic
cost, we use l1-norm Wasserstein distance as:

W1(f1, f2) =

dim∑
i=1

| 1
n

n∑
j=1

f1[j, i]−
1

n

n∑
j=1

f2[j, i]|, (2)

where dim is the number of dimension of the inputs, and n is the number of
samples. This process involves initially calculating the mean values of the distri-
butions across each feature dimension. Subsequently, the differences between the
mean values in the corresponding dimensions of the respective distributions are
calculated. The aggregation of these differences serves as a quantitative represen-
tation of the Wasserstein distance between the two sets of features. To integrate
this measure into the learning process of the model, we sum the Wasserstein dis-
tances computed across all layers as shown in the green box of Fig.3, formulating
this aggregate as the Wasserstein distance loss. This strategy is instrumental in
bridging the gap between the source and target domain features, thereby facili-
tating domain adaptation.

This approach assumes that the Wasserstein distance across multiple dimen-
sions can be approximated by averaging the distances of the projections onto
individual dimensions. While it simplifies the true multidimensional Wasserstein
distance, which would require solving an optimization problem to find the op-
timal transport plan, the method is computationally efficient and offers an in-
formative approximation for training purposes as a loss function measuring the
distance between distributions.

Overall, the network architecture detailed in this study consists of two dis-
tinct phases, as depicted in Fig.3. Initially, a dual-branch structure is integrated
into the model to concurrently process data from both source and target do-
mains. This dual-branch configuration employs the source domain branch to
steer the learning trajectory of the target branch, facilitating an exchange of
information between the two. Subsequently, the model computes the Wasser-
stein distance to quantify the divergence in feature distributions between the
two domains. By leveraging the Wasserstein loss, the model actively minimizes
this domain discrepancy, thus aligning the target domain features with those of
the source. The source encoders are trained in a supervised manner to ensure its
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classification ability, which in turn is transferred to the target domain branch in
an unsupervised fashion to imbue it with analogous classification ability. The key
characteristic of this architecture is the iterative process of domain distance min-
imization, through which the model extrapolates the source domain’s knowledge
and augments its prediction performance within the target domain.

3 Experiments

Data Description. Working Memory dataset from HCP. Our working mem-
ory dataset [21] is a subset of the HCP-Task fMRI dataset [1]. The HCP-Task
aims to capture brain activity during various cognitive tasks, each designed to
elicit specific patterns of brain activity. It focuses on working memory tasks and
comprises two distinct scans. A total of 1081 subjects were selected, with each
fMRI scan consisting of 405 time points. These subjects were collected involving
tasks under the 2-back and 0-back conditions across various stimuli (body, place,
face and tool) intermixed with periods of rest, and thus there are 8 classes per
subject. The sequence of tasks varied between the two scan sessions, enabling an
analysis of the replicability and consistency of brain activation patterns. Simu-
lated Data Generation. We use the SimTB toolbox [7] to simulate 2000 fMRI
sequences with each consisting of 405 time points that mimic three distinct brain
states. A depiction (Fig.4, left) showcases three states, each characterized by
three interconnected modules, along the diagonal of their respective functional
connectivity matrices [6]. It also involves two scans with different State orders
for assessing the methods’ replicability.

Experimental Settings. In our experiments, the samples in one scan are used for
training, and the other dataset is randomly divided into a validation set and a
test set with a ratio of 0.4/0.6, and we compare it with four counterpart methods:
BolT [3], LSTM [12], SwinTransformer (SiwnT) [13], HATNet [15]. Our model
has 6 layers and 4 heads in each encoder, and the hidden dimension is 1024. We
used Adam optimizer and the batch size of the training is 64.

3.1 Evaluation on Simulated data

To evaluate the effectiveness of the method we’ve developed, we conducted tests
across a spectrum of noise conditions by adding uncorrelated Gaussian noise to
the simulated BOLD signals, setting the signal-to-noise ratios (SNRs) at levels
ranging from 60dB down to 0.5dB. The SNR is used here to quantify the pro-
portion of signal power to noise power. By adjusting the SNR values in our tests,
we can examine how our method is robust to varying degrees of noise, provid-
ing insights into its performance in real-world scenarios with varying levels of
noise interference. The recognition results on these simulated data, depicted in
Fig.4 (right), demonstrate that our approach maintains relative stability across
a broad range of noise conditions.
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ACC

noise +++ noise +

Fig. 4: Left: Simulated data generation. Right: The recognition accuracy on
simulated data with different levels of noise.

3.2 Application on Task-based fMRI Data

Evaluating the Accuracy of Task Recognition. For all comparative meth-
ods, including BolT [3], LSTM [12], SwinT [13], and HATNet [15], they did not
show the model replicability across different scans. In light of this limitation, we
retrained and evaluated all these models on the working memory data with two
scans. This enabled us to unveil their replicability across distinct scans.
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Fig. 5: The confusion matrices of all methods that are trained on scan 1 and
tested on scan 2 fMRI data. 0: 2back tool, 1: 0back body, 2: 2back face, 3: 0back
tool, 4: 2back body, 5: 2back place, 6: 0back face, 7: 0back place.

The overall performance is shown in Table 1, and the confusion matrices of
test results for all methods are depicted in Fig.5. Bolt demonstrates superior
accuracy in predicting classes 2 and 7, but its efficacy diminishes significantly
for the remaining classes, indicating an imbalanced prediction accuracy across
classes. LSTM and HATNet exhibit enhanced predictive capabilities for some of
the classes but display sharply declined accuracy for samples from other classes.
And SwinT’s overall performance is subpar. In contrast, our proposed method
demonstrates relatively accurate predictions across nearly all classes, especially
excelling in classes 1, 2, 5, and 7, where it achieves an accuracy of approximately
80%. Notably, our approach achieves an overall balanced and accurate prediction,
highlighting the efficacy of its features.

Furthermore, our investigation extended to the evaluation of methodologies
for addressing the domain adaptation problems, including DANN [10], MCD
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Table 1: Benchmark tests w.r.t. current comparison methods.
(%) BolT LSTM SwinT HATNet DANN MCD DIRT-T Ours
Pre 46.38 26.78 14.71 37.04 41.25 30.31 14.13 54.54
F1 46.43 26.31 15.29 37.22 41.06 32.76 12.21 53.21
Acc 48.79 25.89 17.45 39.78 44.03 30.89 16.89 54.77

[19], and DIRT-T [20]. A comparative analysis of these specialized techniques is
shown in Table 1.

Our method stands out by using two distinct feature extractors for the two
domains, minimizing the distance at the feature level. Specifically, we observed
that samples of different classes exhibit similar shift scales, indicating a relatively
neat shifting pattern. This shift arises from (i)the different phase encoding di-
rections for scan1 and scan2 during the HCP-task data acquisition; (ii) in the
continuous fMRI acquisition, changes in the order of tasks will lead to different
fluctuations in the processed BOLD. These factors suggest group-level differences
rather than individual variability. Thus using the same feature extractor for two
domains (used in DA models) might confuse the model. Meanwhile, DANN uses
domain discriminators to close two domains, but with strong feature extraction
(as we use Transformer), feature distribution matching becomes weak, leading
to class mismatch. MCD relies heavily on the discrepancy discrimination by two
classifiers. The neat shift makes it difficult for the model to identify challenging
samples in the target domain, limiting MCD’s effectivenesses. Overall, despite
their commendable efficacy in the realm of vision tasks, their performance on
fMRI data exhibited insufficiency.

Motor-Scan1 Motor-Scan2 Language-Scan1 Language-Scan2

Fig. 6: Brain mapping for the tasks of Motor and Language based on test (scan
1) and retest data (scan 2).

Brain Mapping for Task Recognition. To explore how different tasks
activate specific brain regions and to examine if these activations remain consis-
tent across test/retest scans, we adopt the evaluation approach introduced by
BolT [3] on the entire HCP-task dataset rather than just focusing on working
memory. To accurately depict the relationship between tasks and brain regions,
we choose tasks that primarily activate single-function brain areas, like Motor
and Language tasks. Initially, we train a Transformer for binary classification,
using classification tokens from the last layer as representatives of the samples in
both scan 1 and scan 2 data for Motor and Language tasks. Then, we employ a
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logistic regression model to classify these features, obtaining model coefficients,
which offer insights into the importance of features for tasks belonging to the
positive class, as attention maps for brain mapping.

In illustrating attention maps for each task, we focus on the top 20 brain re-
gions with the highest weights. As depicted in Fig.6, for the Motor task, the area
circled in black corresponds to the Primary Motor Cortex, a component of the
Somatosensory and Motor region. Remarkably, our identification remained pre-
cise and consistent across both test and retest datasets. Regarding the Language
task, we accurately identified the Early Auditory area and Auditory Association
area in the test data and identified the Auditory Association area in the retest
data, as highlighted within the black circle. Notably, the brain regions identi-
fied in both test and retest data exhibit considerable overlap, affirming the high
consistency of the features extracted from both datasets.

4 Conclusion

In this work, we highlight a challenge of limited generalizability in current deep
learning models utilized in fMRI research, we propose an effective solution em-
ploying a new dual-branch transformer with minimizing Wasserstein distance
specifically designed for analyzing multi-session fMRI data from test-retest scans.
Our deep model outperforms established benchmarks, demonstrating superior
accuracy and replicability in identifying cognitive tasks. This underscores the
versatility and potential of our data-driven methodology across diverse neuro-
science studies.
Disclosure of Interests. The authors have no competing interests to declare.
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