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Abstract. Cortical surface reconstruction typically relies on high-quality
3D brain MRI to establish the structure of cortex, playing a pivotal role
in unveiling neurodevelopmental patterns. However, clinical challenges
emerge due to elevated costs and prolonged acquisition times, often re-
sulting in low-quality 2D brain MRI. To optimize the utilization of clin-
ical data for cerebral cortex analysis, we propose a two-stage method
for cortical surface reconstruction from 2D brain MRI images. The first
stage employs segmentation-constrained MRI super-resolution, concate-
nating the super-resolution (SR) model and cortical ribbon segmentation
model to emphasize cortical regions in the 3D images generated from
2D inputs. In the second stage, two encoders extract features from the
original and super-resolution images. Through a shared decoder and the
mask-swap module with multi-process training strategy, cortical surface
reconstruction is achieved by mapping features from both the original
and super-resolution images to a unified latent space. Experiments on the
developing Human Connectome Project (dHCP) dataset demonstrate
a significant improvement in geometric accuracy over the leading-SR
based cortical surface reconstruction methods, facilitating precise corti-
cal surface reconstruction from 2D images. The code is open-sourced at:
https://github.com/SCUT-Xinlab/CSR-from-2D-MRI.

Keywords: Cortical surface reconstruction · Multi-modal representa-
tion learning · MRI super-resolution.

1 Introduction

Cortical surface analysis plays a pivotal role in unraveling the intricacies of
brain structure, providing crucial insights into neuroanatomy, connectivity, and
the neural basis of cognition and disorders. The cortical surface is typically
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reconstructed from high-quality 3D brain MRI data. However, obtaining high-
resolution images in clinical settings proves challenging, especially when dealing
with newborns who frequently exhibit head movements. Consequently, clinical
data often consist of high in-plane resolution but low-resolution images with
significant slice gaps in the through-plane direction due to these constraints.

To enhance the analysis of clinical data, the process of reconstructing corti-
cal surfaces from LR clinical images typically involves two key steps. The first
step is to downsample real high-resolution (HR) brain MRI, creating paired low-
resolution (LR) and HR images. These LR-HR image pairs are then used to
train MRI Super-Resolution methods [10, 11, 20] to reduce slice gaps and as a
result enhancing the quality of the generated 3D images. For the second step,
the predicted SR MRI can be used to reconstruct the cortical surface through
traditional neuroimage processing pipelines, such as FreeSurfer [3–5], for adults
or the dHCP pipeline [1,6,16] for newborns. However, processing large volumes
of clinical data is time-intensive and challenging for these pipelines. Alterna-
tively, learning-based approaches [2, 7, 12–14, 18] transform SR brain MRI from
the first step into implicit surface representations or explicit deformation fields,
significantly reducing the time required for surface reconstruction to seconds per
subject.

Nevertheless, even though learning-based cortical surface reconstruction meth-
ods address the issue of inference speed, they still require high-quality SR 3D
brain MRI as input to achieve accurate reconstruction. Yet, when facing signifi-
cant slice gaps in LR brain MRI, state-of-the-art (SOTA) SR methods struggle
to generate SR images with details matching real 3D brain MRI. This limitation
hinders the model’s ability to accurately capture cerebral cortex information.

To address this problem, we aim to further enhance the performance of corti-
cal surface reconstruction from both image-wise and feature-wise perspectives. In
addressing the image-wise aspect, our objective is to emphasize on cerebral cor-
tex information in the generated SR brain MRI. To achieve this, we employ the
segmentation mask as a topology guidance, directing the SR model to prioritize
the cortical region. In addressing the feature-wise aspect, inspired by the bene-
fits of multi-modal learning approaches [8, 9, 15, 17, 19] in achieving consistency
across diverse data modalities in a high-dimensional feature space, we treat SR
brain MRI and real HR brain MRI as distinct modalities. Employing a feature
alignment strategy, our goal is to enable a cortical surface reconstruction model
trained on HR brain MRI to effectively adapt to the features of SR brain MRI.
This adaptation facilitates the accurate reconstruction of the cerebral cortex.

In this paper, we introduce a two-stage model for precise cortical surface
reconstruction from 2D MRI, which consists of Segmentation Constrained MRI
Super-Resolution (SCSR) and Feature Alignment Guided Cortical Surface Re-
construction (FAGCSR). The main contributions of this paper can be summarize
as follows: 1) The proposed SCSR, based on the advanced SR method FSTNet,
incorporates a segmentation model for the cortical ribbon as a constraint, enrich-
ing the predicted SR brain MRI with pertinent cortical information for improved
surface reconstruction. 2) In the FAGCSR, we propose a mask-swap module with
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a novel multi-process training strategy, gradually aligning SR brain MRI features
with HR brain MRI in a unified latent space. During inference phase, the sole
use of predicted SR suffices for generating high-quality cortical surface, enabling
efficient leveraging of abundant LR clinical data and broadening the scope of
cerebral cortex analyses. 3) Experiments on the publicly available dHCP dataset
demonstrate the effectiveness of achieving precise cortical surface reconstruction
from LR 2D brain MRI.
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Fig. 1. The Architecture of the proposed method.

2 Method

2.1 Model Architecture

As illustrated in Fig. 1, we propose a two-stage model for cortical surface recon-
struction from 2D LR brain MRI images. In stage 1, we aim to enhance surface
reconstruction performance at the image level. Building upon a state-of-the-art
MRI super-resolution model, we incorporate a cortical segmentation model as a
constraint to guide the focus of the SR model on cortical regions. This ensures
the generation of HR brain MRI with a more complete cortical surface topology.
The objective of Stage 2 is to enhance the model performance at the feature
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level. We introduce a dual-path cortical surface reconstruction model with a
mask-swap module. It serves as a bridge to align features from paired SR 3D
brain MRI and real 3D brain MRI into a shared latent space. This enables the
decoder to accurately generate the surface from the SR features.

2.2 Segmentation Constrained MRI Super-Resolution

In this section, we present the details of Segmentation-Constrained MRI Super-
Resolution (SCSR) employed for the generation of high-resolution cortical topol-
ogy enhanced MRIs. Initially, two models are trained separately: an SR model,
FSTNet, and a cortical ribbon segmentation model, Seg, with FSTNet recog-
nized as one of the premier SR models. For FSTNet, given an input LR MRI,
Ilr ∈ RX×Y×Z , exhibiting high resolution in axial slices (XY) and lower res-
olution in the through-plane direction (Z), its role is to generate HR MRI,
Isr ∈ RX×Y×kZ , with k denoting the up-sampling rate. Simultaneously, a 2D
Unet is trained for the cortical ribbon segmentation using high-resolution axial
slices and corresponding masks. Subsequently, we sequentially combine FSTNet
and Seg with frozen parameters. The continued training of FSTNet under the
constraint of Seg ensures a focused attention on the cortical regions, resulting in
the generation of HR MRIs Ihr with a more comprehensive cortical topology.

During the isolated training of FSTNet, we use their default loss function
[10,11], including MSE loss LMSE and GAN loss LG. The total loss is represented
as LSR = LMSE +λGLG. For the exclusive training of Seg, we only employ Dice
loss LDice. In the joint training of FSTNet and Seg, we freeze the parameters of
Seg, and the total loss is denoted as L1 = LSR + µLDice.

2.3 Feature Alignment Guided Cortical Surface Reconstruction

Mask-Swap Module To align the features of SR 3D brain MRI with those
of real 3D brain MRI in a common latent space, we employ a dual-path de-
sign and extend the mask-swap module to brain data. Initially, the predicted
SR MRI Isr and real HR MRI are partitioned into non-overlapping patches of
dimensions N × 8, where N = X

2 × Y
2 × Z

2 represents the number of patches,
and 8 signifies the embedding dimension of each patch. Following this, both
Isr and Ihr undergo encoding into the feature space using two Transformer
encoders, EN1 and EN2, resulting in corresponding features of the same dimen-
sions, namely Fsr = EN1(Isr) and Fhr = EN2(Ihr). Utilizing the mask-swap
module, we randomly select N1 = a ∗N tokens from Fsr and complementarily
select N2 = (1−a)∗N tokens from Fhr. These tokens are then combined to form
a mixed feature, Fmix, where a ∈ [0, 1] represents the weight corresponding to
the number of tokens selected from Fsr. Subsequently, Fmix is input into the
decoder for surface reconstruction, effectively aligning Fsr and Fhr within the
same feature space.

Multi-Process Training Strategy Next, we will present the details of align-
ing Fsr to Fhr through a multi-process training strategy with the mask-swap
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module. Initially, with a set to 0, the model is trained solely on the features
corresponding to the real HR image Fhr until convergence, enabling the recon-
struction of high-quality cortical surfaces. Subsequently, the model undergoes
iterative training, starting with the already converged state at a = 0, and pro-
ceeds with additional training cycles at a = 0.25, a = 0.5, a = 0.75, achieving
convergence at each state. During this progression, the encoder gradually aligns
Fsr with Fhr, bringing them into a coherent latent space conducive to the gen-
eration of accurate surfaces. To prevent catastrophic forgetting, a dual-path
training strategy is adopted instead of directly transitioning a from 0.75 to 1.
Leveraging the model trained at a = 0.75, a is set to 0.5 to generate Fmix, while
retaining the features of Fsr. Both sets of features are simultaneously input into
the shared-decoder for cortical surface reconstruction. Throughout this process,
the Fmix branch ensures alignment between the features of Fhr and Fsr, while
the Fsr branch ensures direct fitting of the predicted SR brain MRI. This multi-
process training approach allows the proposed method, during the testing phase,
to directly reconstruct accurate cortical surfaces from a single SR image (Fig.
1).

Cortical Surface Reconstruction This subsection introduces cortical surface
reconstruction based on diffeomorphic transformation. The approach utilizes a
Neural Ordinary Differential Equation (NODE) to model the reconstruction pro-
cess. Following the CoTAN [12], we generate a time-varying velocity field (TVF)
from 3D brain MRI to deform a template mesh to the cortical surface. Tak-
ing HR brain MRI Ihr as an example, the encoder initially maps Ihr to fea-
tures Fhr. Subsequently, the decoder transforms the feature into a flow field
U ∈ RX×Y×Z×3, driving the deformation process. Given a template surface
S0 ∈ Nv × 3, the definition of the deformation ODE and its solution over time
t ∈ [0, T ] are computed as:

∂

∂t
ϕt = U, ϕ0 = S0, (1)

ST = ϕT (S0) = S0 +

∫ T

0

Uds, (2)

where ϕt represents the deformation trajectory of S0 and ST = ϕT (S0) represents
the final surface after deformation, which is the predicted cortical surface.

In practical applications, we employ the numerical solution to solve the ODE.
For the corresponding time t ∈ [0, T ] and solution ϕT (S0), we discretize the ODE
using a fixed-step method. Taking Euler method as an example, the definition
and solution are represented as Sn+1 = Sn + h∆Sn, where n ∈ [0, N ]. N is
the number of total steps of iteration, SN is the predicted cortical surface, ∆Sn

denotes the flow field U representing the variation at each step, and h = T/N is
the step size.

For the training of surface reconstruction, following prior work [12], we in-
corporate Chamfer distance loss Lc to minimize the disparity between pre-
dicted and ground-truth surfaces, Laplacian loss Llap for mesh smoothness and
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normal consistency loss Ln to ensure consistent normals between the gener-
ated surface and the ground-truth. The total loss function is represented as
L = Lc + λlapLlap + λnLn, where λlap and λn represent the weights assigned to
the Laplacian loss and normal consistency loss, respectively.

3 Experiments

3.1 Setup

Dataset and Evaluation Metrics In our study, we employed 877 T2-weighted
brain MRI images from the third release of the developing Human Connectome
Project (dHCP). These scans are acquired from newborns with a PMA ranging
from 26 to 45 weeks. For generating LR brain MRI, we down sample the real MRI
by a rate of 4. We partitioned this dataset into training, validation, and test sets,
with respective allocations of 70%, 10%, and 20%. We assess geometric accuracy
using Chamfer Distance (CD), average symmetric surface distance (ASSD), and
Hausdorff Distance (HD) as evaluation metrics. Calculation of these distances
are performed on point clouds, each containing 100k uniformly sampled points
derived from both the predicted and pseudo ground-truth surfaces.

Implementation Details Experiments were conducted using PyTorch 1.13.1
and an NVIDIA RTX 4090 GPU. For the SCSR training stage, we employ a
λG value of 0.001 for independent SR training, conducting 20,000 iterations.
Independent Seg training spans 200 epochs, while joint training involves setting
µ to 0.5 and training for 20,000 iterations. In the FAGCSR stage, we set λlap

to 0.5 and λn to 0.0005. Training includes 100 epochs for each a value (0, 0.25,
0.5, 0.75), followed by an additional 200 epochs in a dual-path manner with a
set to 0.5. Both stages use the Adam optimizer with a learning rate of 0.0001.
Throughout the experiments, focus was solely directed towards the left-hemi
white matter surface.

3.2 Comparative Results

The conventional approach for reconstructing the cortical surface from LR 2D
brain MRI initially employs SR methods to transform 2D images into 3D coun-
terparts. Subsequently, the predicted SR 3D brain MRI undergoes processing
using surface reconstruction methods designed for HR 3D brain MRI. To assess
the effectiveness of our proposed method, we now compare it with several cor-
tical surface extraction approaches, including Corticalflow [7], CFPP [18], and
CoTAN [12]. We utilize the SR 3D brain MRI output by FSTNet as the input
for retraining the surface reconstruction models with default settings. Table 1
demonstrates the superior performance of our proposed method on CD, surpass-
ing the conventional approach by 16.38%, 13.10%, and 8.75% for Corticalflow,
CFPP, and CoTAN, respectively. Additionally, our method outperforms in terms
of ASSD by 13.83%, 9.86%, and 9.27%. Furthermore, the proposed method excels
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Table 1. Comparative results of neonatal cortical surface reconstruction on the dHCP
dataset. Methods employing SCSR demonstrate statistically significant improvements
over their respective baseline versions (paired t-test p < 0.05).

Left White Matter Surface Reconstruction
Method Input MRI CD (mm) ASSD (mm) HD (mm)

Corticalflow FSTNet 0.299± 0.068 0.159± 0.025 0.341± 0.073
FSTNet-SCSR 0.292± 0.062 0.152± 0.023 0.324± 0.061

CFPP FSTNet 0.290± 0.063 0.152± 0.024 0.324± 0.065
FSTNet-SCSR 0.285± 0.062 0.147± 0.023 0.312± 0.060

CoTAN FSTNet 0.274± 0.055 0.151± 0.022 0.324± 0.055
FSTNet-SCSR 0.269± 0.066 0.144± 0.022 0.306± 0.056

Proposed FSTNet 0.252± 0.045 0.139± 0.020 0.291± 0.046
FSTNet-SCSR 0.250± 0.049 0.137± 0.020 0.288± 0.049

CFPP Original 3D 0.238± 0.061 0.119± 0.021 0.246± 0.064

in HD with improvements of 15.54%, 11.11%, and 11.11%. The Fig. 2 illustrates
the predicted white matter surfaces generated by these methods, accompanied
by their respective error maps computed against the ground-truth. Our method
demonstrates fewer errors and artifacts compared to alternative approaches. This
observed enhancements indicate that our proposed method not only builds upon
but further enhances the performance of one of the leading SR methods FSTNet
in downstream cortical surface reconstruction tasks.

Table 2. Ablation Study on FAGCSR Stage. Methods employing FAGCSR demon-
strate statistically significant improvements over their respective baseline versions
(paired t-test p < 0.05).

Left White Matter Surface Reconstruction
SR Method Mask Swap CD (mm) ASSD (mm) HD (mm)

Bicubic
✗ ✗ 0.400± 0.098 0.229± 0.034 0.523± 0.092
✗ ✓ 0.366± 0.081 0.213± 0.030 0.484± 0.081
✓ ✓ 0.364± 0.081 0.213± 0.031 0.486± 0.083

FSTNet
✗ ✗ 0.277± 0.065 0.150± 0.023 0.316± 0.054
✗ ✓ 0.258± 0.051 0.142± 0.297 0.252± 0.045
✓ ✓ 0.252± 0.045 0.139± 0.020 0.291± 0.046

FSTNet-
SCSR

✗ ✗ 0.258± 0.046 0.142± 0.020 0.298± 0.049
✗ ✓ 0.257± 0.049 0.139± 0.020 0.292± 0.050
✓ ✓ 0.255± 0.049 0.137± 0.020 0.288± 0.049

3.3 Ablation Study

To further substantiate the effectiveness of our proposed approach, we conducted
ablation experiments on the SCSR and feature alignment module. Using FSTNet
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Fig. 2. Visualization of the error map computed from the predicted white matter sur-
faces and pseudo ground-truth of a single subject.

as the baseline for SR, we investigated the impact of the SCSR module on the
cortical surface reconstruction model’s performance. The models were retrained
using SR 3D brains generated by FSTNet and FSTNet with SCSR as inputs for
four surface reconstruction methods (Corticalflow [7], CFPP [18], CoTAN [12],
and our proposed method). As detailed in Table 2, SCSR significantly enhances
the geometric accuracy of the predicted surface, yielding average improvements
of 1.7% on CD, 3.49% on ASSD, and 3.90% on HD compared to FSTNet without
SCSR. The quantitative results demonstrate that SCSR effectively directs the
attention of the SR model towards cortical ribbon, leading to improved perfor-
mance in downstream surface reconstruction tasks.

Subsequently, we evaluate the impact of the FAGCSR stage on 3D brain
images generated by three SR methods (Bicubic, FSTNet, FSTNet-SCSR) with
real HR 3D brain images on model performance. Feature alignment is achieved
via mask-swap module, utilizing swap for feature alignment and the mask for
mapping features to a more generalized latent space. When employing both mask
and swap, the geometric accuracy of the predicted cortical surface experiences
significant improvement by 6.84%, 6.14%, and 6.33% on CD, ASSD, and HD,
respectively. Upon removing the mask component, a slight dip in geometric
accuracy was observed.

4 Conclusion

This study introduces a two-stage model for accurate cortical surface recon-
struction from 2D MRI. The Segmentation-Constrained MRI Super-Resolution
(SCSR) stage employs the topological structure of the cortical ribbon for guid-
ance, generating SR brain MRI with crucial cerebral cortex information. The
Feature Alignment-Guided Cortical Surface Reconstruction (FAGCSR) stage
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aligns the SR brain MRI to the feature space of the corresponding real im-
age. Building upon a leading SR model, proposed method further enhance the
geometric accuracy at both image-wise and feature-wise levels, showcasing SOTA
performance in the task of reconstructing cortical surfaces from 2D low-resolution
brain MRI.
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