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Abstract. The recent advancement of spatial transcriptomics (ST) al-
lows to characterize spatial gene expression within tissue for discovery
research. However, current ST platforms suffer from low resolution, hin-
dering in-depth understanding of spatial gene expression. Super-resolution
approaches promise to enhance ST maps by integrating histology images
with gene expressions of profiled tissue spots. However, current super-
resolution methods are limited by restoration uncertainty and mode
collapse. Although diffusion models have shown promise in capturing
complex interactions between multi-modal conditions, it remains a chal-
lenge to integrate histology images and gene expression for super-resolved
ST maps. This paper proposes a cross-modal conditional diffusion model
for super-resolving ST maps with the guidance of histology images. Specif-
ically, we design a multi-modal disentangling network with cross-modal
adaptive modulation to utilize complementary information from histology
images and spatial gene expression. Moreover, we propose a dynamic
cross-attention modelling strategy to extract hierarchical cell-to-tissue in-
formation from histology images. Lastly, we propose a co-expression-based
gene-correlation graph network to model the co-expression relationship
of multiple genes. Experiments show that our method outperforms other
state-of-the-art methods in ST super-resolution on three public datasets.

Keywords: Spatial Transcriptomics · Digital Pathology · Diffusion
Models · Cross-Modal Super-Resolution.

1 Introduction

Spatial transcriptomics (ST), the spatial distribution of gene expressions, enables
genomic profiling while preserving structural information within original tissue,
promising to understand complex conditions with spatial heterogeneity. However,
popular ST platforms, e.g., Visium [20] and Stereo-seq [4], only measure gene
expression in tissue spots, and the very low spatial resolution limits their ability
to study in-depth gene expression. Novel biotechnology is developed for targeted
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in-situ sequencing, e.g., IISS [21], to generate higher resolution ST maps. However,
these methods are expensive and time-consuming. Also, they are limited by the
technical bottleneck of low capture rates and throughput.

Computational approaches promise to enhance the spatial resolution of ST
maps and accelerate scientific discovery [23, 24]. For instance, Zhao et al. [23]
proposed a Bayesian statistical method using spot neighborhood information for
enhancing the resolution of ST maps. Despite encouraging results, this method
is purely based on genomics without leveraging the histology information at the
tissue and cellular levels available from ST maps. Therefore, the fine-grained ST
is challenged by the biological confidence of imputed resolution.

Histology features observed from tissue sections are enriched with phenotypic
structure and morphology information. Previous studies show that image-level
histology features are associated with tissue gene expression[19, 1, 2]. This intrinsic
link establishes the feasibility of super-resolving ST maps using histology features
extracted from tissue images as additional guidance combined with profiled tissue
spots. A few studies [17, 3, 10] have attempted this direction, e.g., Pang et al. [23]
designed a two-stage transformer-based framework where low-resolution (LR) ST
is firstly predicted from histology images and then used to infer high-resolution
(HR) ST. However, due to the two-stage design, this model fails to establish the
link between the multi-modalities of histology images and gene expression maps.
Further, most recent works, e.g., xFuse [3] and iStar [22], are unable to directly
utilize the HR ST maps in training, and they only use the downsampled LR ST
as weak supervision, thus less capable of reconstructing expression details.

Conditional diffusion models are a class of deep generative models that have
achieved state-of-the-art performance in natural and medical images [15, 11,
6]. The model incorporates a Markov chain-based diffusion process along with
conditional variables, i.e., LR images, to restore HR images. The conditioning
mechanisms in the diffusion model enable the possibility of incorporating multi-
modal conditional data, promising better super-resolved outputs. Additionally, the
objective function of diffusion models is a variant of the variational lower bound
that yields stable optimization processes. Given these advantages, conditional
diffusion models promise to effectively enhance the resolution of ST maps by
integrating genomics and histology images.

However, several challenges remain in developing diffusion models to integrate
multi-modal information in super-resolving ST maps: 1) Traditional methods
regard multi-modal data as multiple diffusion conditions, which are integrated
via simple concatenation or disentanglement [13]. These methods treat each
modality equally and ignore the modulation across modalities, which may not
effectively leverage complementary information in histology images and gene
expression; 2) Diffusion models are primarily intended for the generation of a
single image, i.e., treating the ST map of each gene separately. Intrinsic expression
associations across multiple genes can result in inconsistent diffusion processes,
posing challenges to the efficient learning of relevant features; 3) The complex
structure and morphology information at cellular and tissue levels pose challenges
to integrating multi-modal data in the conditioning process of the diffusion model.
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Fig. 1. Conceptual workflow of Diff-ST. The forward diffusion process q perturbs HR
ST x by gradually adding Gaussian noise. The backward diffusion process p denoises
the perturbed ST, conditioning on its paired LR version y and histology image h.

To address the challenges, we propose a novel cross-modal conditional diffusion
model (Diff-ST) for ST super-resolution (SR). To the best of our knowledge,
this is the first diffusion-based multi-modal SR method for ST maps. The main
contribution of our work is threefold:

– We propose a new backbone, i.e., a multi-modal disentangling network with
cross-modal adaptive modulation, for the conditional diffusion model.

– We propose a co-expression intensity-based gene-correlation graph (CIGC-
Graph) network to model the co-expression relationship of multiple genes.

– We propose a cross-attention modelling strategy, which enables extracting
hierarchical cell-to-tissue level information from tissue images.

Our extensive experiments on the three public datasets demonstrate that our
method outperforms other state-of-the-art (SOTA) methods.

2 Methodology

2.1 Framework

The proposed Diff-ST achieves multi-modal ST SR through forward and backward
diffusion processes, illustrated in Fig. 1, inspired by [6]. Given the multi-channel6
HR ST images x0 ∼ q(x0), the forward process gradually adds Gaussian noise
to x0 over T diffusion steps according to a noise variance schedule β1, . . . , βT .
Specifically, each step of the forward diffusion process produces noisier images xt

with distribution q(xt | xt−1), formulated as:

q (x1:T | x0) =
T∏

t=1
q (xt | xt−1) , q (xt | xt−1) = N

(
xt;

√
1 − βtxt−1, βtI

)
(1)

For sufficiently large T , the perturbed HR xT can be considered as a close
approximation of isotropic Gaussian distribution. On the other hand, the reverse
6 Channel number denotes the number of genes that are predicted together.
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diffusion process p aims to generate new HR ST maps from xT . This is achieved
by constructing the reverse distribution pθ (xt−1 | xt, y, h), conditioned on its
paired LR ST maps y and histology image h as follows:

pθ (x0:T ) = pθ (xT )
T∏

t=1
pθ (xt−1 | xt)

pθ (xt−1 | xt, y, h) = N
(
xt−1;µθ (xt, y, h, t) , σ2

t I
)

(2)

where pθ denotes a parameterized model, θ is its trainable parameters, while
µθ and σ2

t can be learned. Specifically, the detailed conditioning mechanism for
reverse diffusion is introduced as follows.

2.2 Conditioning mechanisms for reverse diffusion

1) Overall process: Taking the multi-modal histology image and LR ST maps
as input conditions, our proposed Diff-ST learns to reconstruct the HR ST maps
in the reverse diffusion process. Fig. 2(a) shows the detailed conditioning process,
in which the reverse distribution is estimated by learning multi-modal repre-
sentations. Specifically, we first extract hierarchical cell-to-tissue level features
from histology images via cross-attention modelling. Then, the extracted features
are fused with LR ST features via the cross-modal adaptive modulation and
multi-modal disentangling strategy. Finally, the fused multi-modal features are
fed into the reverse diffusion process as conditions for reconstructing HR ST.
2) Hierarchical cell-to-tissue feature extraction: It is central to consider
cellular heterogeneity, i.e., cells may contribute distinctly to expression profiles.
Thus, to obtain the cell-level information, we first crop the input histology image
h into M7 patches {hcell}M

1 . Due to the varied cellular complexity and learning
difficulty across patches, we propose a dynamic patch selection strategy based on
curriculum learning. Specifically, given encoded features {Fcell}M

1 of patches, we
select and retain the features as Fs

cell = {Fm
cell

∣∣E(hm
cell) > γ}M

m=1, where E(·) is
the entropy-based image complexity estimation function. As training progresses,
γ gradually increases, indicating increased complexity of sampled patches.

To identify key patches for certain genes, the screened cell-level features Fs
cell

are further integrated with the tissue-level features Ftissue via the cross-attention
modelling Atten(Q, K, V ) = softmax

(
QKT

√
d

)
· V , with

Q = f(Ftissue) · WQ, K = f(Fs
cell) · WK , V = f(Fs

cell) · WV .

Here, f(·) denotes the pixel flattening function, and WV ∈ Rdc×dt , WQ ∈ Rdt×d

& WK ∈ Rdc×d are learnable projection matrices, where dt and dc denote the
features channels of Ftissue and Fs

cell, respectively.
3) Cross-modal adaptive modulation & multi-modal disentangling:
Given the extracted multi-modal features of histology image Fin

h and LR ST maps
7 Here, M is set to 256, with each patch of 320 pixels, reflecting 160µm regions in real

tissue, consistent with the average cellular organization scale in histology [5].
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Fig. 2. Left: Illustration of the multi-modal conditioned reverse diffusion process of
Diff-ST. Right: Pipeline of cross-modal (histology-to-ST) adaptive modulation strategy.
CL is curriculum learning, while FC denotes fully connected.

Fin
y , we propose a cross-modal adaptive modulation strategy to share the modal-

specific information with each other, i.e., cellular and tissue information from
histology to ST, and gene expression patterns from ST to histology. Specifically,
in the histology-to-ST modulation (Fig 2(b)), to each pixel in Fin

y (denoted as
y(w, h)), we learn a modulation filter fh2y

(w,h)(·) constricted to its adjacent pixels
in an a × a region (denoted as Ay(w,h)) and target its counterpart region in Fin

h
(denoted as Ah(w,h)). As such, the filter can fully exploit the local dependency
between histology images and ST maps. The filtering operation is expressed as

A′
y(w,h) = Ay(w,h)w

h2y
(w,h), where wh2y

(w,h) = FC((Ay(w,h))
T Ah(w,h)) (3)

where FC is fully connected layer and the resulting A′
y(w,h) is the update of

Ay(w,h) and is induced to spatially refer to Ah(w,h), which is in HR domain.
The shared features of tissue structure across ST maps and histology images

can bridge the translation from image to spatial expression. Hence, disentangling
shared and unique features could better facilitate ST enhancement. With the
modal-unique (Uh for histology and Uy for ST) and modal-sharing features
(Sh for histology and Sy for ST), a cross-modal disentangling loss Lcm-dis =
∥Sy − Sh∥2/∥Uy − Uh∥2 is designed for minimizing the disparity among shared
representations while maximizing that among unique representations.

2.3 Co-expression intensity-based gene-correlation graph

In predicting expressions of multiple genes, existing diffusion models that sep-
arately infer multi-gene ST maps may ignore the correlation among genes. We
propose a co-expression intensity-based gene-correlation graph (CIGC-Graph)
network for effective modelling of intrinsic co-expression patterns among genes.
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CIGC-Graph (Supplementary Fig. 1) is defined as G = (V, E), where V
indicates the nodes, while E represents the edges. Given the encoded features of
the noised HR ST maps of N genes Fx = [Fi

x]Ni=1 ∈ RN×C as input nodes, we
construct a co-expression intensity based correlation matrix I ∈ RN×N to reflect
the relationships among each node feature, with a weight matrix Wg ∈ RC×C to
update the value of Fx. Formally, the output nodes Fout

x ∈ RN×C are formulated
by a single graph convolutional network layer as

Fmid
x = δ(IFxWg), where I = [Ij

i ]Ni,j=1, Aj
i = 1

2
(
p(Fi

x|Fj
x) + p(Fj

x|Fi
x)

)
. (4)

In (4), δ(·) is an activation function and p(Fi
x|Fj

x) denotes the relative expression
intensity of i-th gene in terms of j-th gene. Besides, residual structure is utilized
to generate the final output Fout

x of CIGC-Graph network, defined as Fout
x =

αFmid
x + (1 − α)Fx, where α is a graph balancing hyper-parameter.

3 Experiments & Results

3.1 Datasets & Implementation Details

Datasets: We evaluated our model on three public datasets, i.e., Xenium [9],
SGE [8] and Breast-ST [7]. In all datasets, we use LR ST maps and paired HR
histology images to restore 5× and 10× HR ST maps, aligning with settings in
[10, 22]. Totally, we include 502 histology images and 12,550 ST maps of 25 genes.

In the Xenium dataset, We randomly split the 232 histology images (with
5,800 ST maps) into 99 (with 2,475 ST maps) for training, 49 (with 1,225 ST
maps) for validation, and 84 (with 2,100 ST maps) for testing. For both SR times,
the histology images are of 5,120 × 5,120 pixels at 0.5 µm px−1, while the LR
ST maps are of 26 × 26 pixels at 100 µm px−1. Besides, the HR ST maps are of
256 × 256 pixels at 10 µm px−1 and of 128 × 128 pixels at 20 µm px−1 for 10×
and 5× SR, respectively. Moreover, the SGE (47 histology and 1,175 ST) and
Breast-ST (223 histology and 5,575 ST) are with the same resolution setting as
Xenium and are both set as external validation datasets, where the SR ST maps
are first downsampled to LR and then used to compare with paired LR ST.
Implementation details: We trained our model for 200 epochs on two NVIDIA
RTX A5000 24 GB GPUs, with batch size 4 and learning rate 0.0001 with AdamW
optimizer [12] together with the weight decay. Following the sampling strategy in
[6], Diff-ST uses the sample steps of 1,000 in both forward and reverse diffusion
processes. Key hyper-parameters are in Table I of supplementary material. All
hyper-parameters are tuned to achieve the best performance over the validation
set. Our method is implemented on PyTorch with the Python environment.

3.2 Performance evaluation

Quantitative comparison on Xenium dataset: We compare our model with
six other SOTA methods, i.e., TESLA [10], HistoGene [17], Guided Diffusion [13],
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Table 1. Performance comparisons on three datasets with 5× and 10× enlargement
scales. Bold numbers indicate the best results.

Dataset Xenium SGE Breast-ST
Scale 5× 10× 5× 10× 5× 10×

Metrics RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC
U-Net 0.376 0.198 0.392 0.208 0.384 0.463 0.414 0.510 0.356 0.540 0.401 0.514

U-Net++ 0.288 0.256 0.319 0.296 0.354 0.509 0.406 0.538 0.303 0.586 0.358 0.492
AttenU-Net 0.396 0.153 0.459 0.133 0.407 0.413 0.486 0.407 0.364 0.510 0.412 0.477
Guided-DM 0.307 0.263 0.324 0.311 0.365 0.492 0.429 0.483 0.276 0.576 0.279 0.548
HistoGene 0.268 0.284 0.310 0.321 0.346 0.517 0.412 0.512 0.245 0.610 0.237 0.608

TESLA 0.223 0.328 0.266 0.384 0.293 0.542 0.335 0.550 0.197 0.672 0.208 0.684
Ours 0.120 0.403 0.173 0.471 0.171 0.613 0.195 0.626 0.132 0.743 0.148 0.758
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Fig. 3. Visual comparisons at 5× and 10× scales on the Xenium dataset. The ST
maps are overlayed on the paired histology image for better visualisation. Note that
ANKRD30A, TPD52, GATA3 and SERPINA3 denote different genes.

U-Net [18], U-Net++ [25] and AttenU-Net [16], at both 5× and 10× enlargement
scales. Note TESLA [10] and HistoGene [17] are specifically designed for ST
SR tasks, while other common image SR methods are baselines. Besides, to
ensure the fairness, all the comparison methods use both the HR histology image
and LR ST maps for enhancing ST resolution. Experimental results are shown
in Table 1, in terms of Root MSE (RMSE) and Pearson correlation coefficient
(PCC), consistent with [10]. As shown, at 5× scale, Diff-ST performs the best,
achieving improvement of at least 0.103 in RMSE and 0.075 in PCC over others,
indicating that Diff-ST could effectively integrate histological features and gene
expressions for ST SR. Similar results can also be found in 10× scale. Notably,
due to the extremely high heterogeneity in spatial gene expression [14], the
expression patterns vary greatly across different tissues and genes, making the ST
SR task challenging due to complex data distribution and severe class imbalance.
Network generalizability analysis: We compare our model with SOTA meth-
ods on 2 external validation datasets, i.e., SGE and Breast-ST, without fine-tuning.
Results are shown in Table1, where both 5× and 10× SR scale settings are tested.
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Table 2. Ablation Study on the Xenium dataset with 5× and 10× enlargement scale.
CAM denotes cross-modal adaptive modulation.

Scale 5× 10×
Metrics RMSE PCC RMSE PCC

w/o CAM 0.186 0.388 0.203 0.434
w/o CIGC-Graph 0.172 0.384 0.195 0.428

w/o hierarchical modelling 0.164 0.377 0.213 0.456
Diff-ST (Ours) 0.120 0.403 0.173 0.471

We observe that at 10× scale, our method achieves an RMSE increment of 0.14
and 0.06 and a PCC increment of 0.076 and 0.074 compared to the best SOTA
method, respectively, suggesting our superior robustness and generalizability.
Visual comparison: Fig. 3 shows the restoration results of different methods
at both 5× and 10× scales on Xenium dataset. Diff-ST outperforms all other
methods, producing HR ST images with sharper edges and finer details. More
visual comparisons are presented in supplementary Fig. 2.

3.3 Ablation experiments

We assess the contribution of three key components in Diff-ST: 1) w/o cross-
modal adaptive modulation - integrate histology and ST features via feature
concatenation; 2) w/o CIGC-Graph - treat each gene of the ST map separately
with simple gene channel concatenation; 3) w/o hierarchical modelling - extract
only tissue-level features without cell- level image patching. The 5× and 10× scale
results on the Xenium dataset are in Table 2. All three models perform worse
than Diff-ST, suggesting that these components can enhance the overall model
performance. The effectiveness of hierarchical modelling demonstrates that hier-
archical histology feature extraction can successfully leverage tissue and cellular
information for ST restoration. Moreover, w/o cross-modal adaptive modulation
performs the worst, consistent with our hypothesis that traditional conditional
diffusion models may not effectively leverage complementary information in
multi-modal data of histology and gene expression.

4 Summary

ST is an edge-cutting biotechnology but is limited by low spatial resolution for
in-depth research. This paper presents Diff-ST, a novel multi-modal conditional
diffusion model for ST super-resolution. We propose a cross-modal adaptive
modulation strategy to model modality interaction for effective integration, which
enables the modulation of complementary information from multi-modalities
for effective conditioned diffusion modeling. To effectively extract intra-modal
features from histology and gene expressions, we propose a CIGC-graph network
to model gene-to-gene relationships alongside a hierarchical histological feature
extraction to capture cell-to-tissue relationships. Our experiments demonstrate
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that our model achieves superior and robust performance over other state-of-
the-art methods, serving as a potential tool for in silico enhancing ST maps,
facilitating downstream tasks in discovery research and clinical translation.
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