
Explanation-driven Cyclic Learning for
High-Quality Brain MRI Reconstruction from

Unknown Degradation

Ning Jiang1,2, Zhengyong Huang1,2, and Yao Sui1,2(B)

1 National Institute of Health Data Science, Peking University, Beijing, China
2 Institute of Medical Technology, Peking University, Beijing, China

yaosui@pku.edu.cn

Abstract. Spatial resolution, signal-to-noise ratio (SNR), and motion
artifacts critically matter in any Magnetic Resonance Imaging (MRI)
practices. Unfortunately, it is difficult to achieve a trade-off between
these factors. Scans with an increased spatial resolution require prolonged
scan times and suffer from drastically reduced SNR. Increased scan time
necessarily increases the potential of subject motion. Recently, end-to-end
deep learning techniques have emerged as a post-acquisition method to
deal with the above issues by reconstructing high-quality MRI images
from various sources of degradation, such as motion, noise, and reduced
resolution. However, those methods focus on a single known source of
degradation, while multiple unknown sources of degradation commonly
happen in a single scan. We aimed to develop a new methodology that
enables high-quality MRI reconstruction from scans corrupted by a mix-
ture of multiple unknown sources of degradation. We proposed a unified
reconstruction framework based on explanation-driven cyclic learning.
We designed an interpretation strategy for the neural networks, the Cross-
Attention-Gradient (CAG), which generates pixel-level explanations from
degraded images to enhance reconstruction with degradation-specific
knowledge. We developed a cyclic learning scheme that comprises a
front-end classification task and a back-end image reconstruction task,
circularly shares knowledge between different tasks and benefits from
multi-task learning. We assessed our method on three public datasets,
including the real and clean MRI scans from 140 subjects with simu-
lated degradation, and the real and motion-degraded MRI scans from 10
subjects. We identified 5 sources of degradation for the simulated data.
Experimental results demonstrated that our approach achieved superior
reconstructions in motion correction, SNR improvement, and resolution
enhancement, as compared to state-of-the-art methods.

Keywords: MRI · Image reconstruction · Image-to-image translation ·
Transformer · Multi-task learning.

1 Introduction

Spatial resolution, signal-to-noise ratio (SNR), and motion artifacts severe in-
fluence the quality of Magnetic resonance imaging (MRI) data [1]. Efforts has
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been made to offer a trade-off between between these factors, in order to achieve
high-quality MRI acquisitions [2]. However, according to the MRI physics, we are
unable to acquire the data with simultaneously high spatial resolution and SNR.
High spatial resolution results in small pixel size, and in turn leads to reduced
SNR. High-resolution scans prolong scan time as well, so consequently increase
the potential of in-scanner motion. Literature has shown that the data quality
is improved with various techniques, such parallel imaging [3], robust k-space
sampling [4], and post-acquisition processing [5].

Deep learning has recently emerged as a post-acquisition technique to address
the above issues by reconstructing high-quality MRI images from various sources of
degradation [6]. Current deep learning-based methods rely on a single task-specific
model that focus on a single known source of degradation for the reconstruction.
However, the degradation of a single MRI scan is commonly from the mixture of
multiple unknown sources. Therefore, a unified framework is desired to allow for
high-quality reconstruction in the face of multiple unknown sources of degradation.

Degradation representations are important for the reconstruction. Previous
methods extracted degradation-specific information to elaborate complex degra-
dation patterns, such as degraded encoder [7, 8], and degradation prompt [9].
However, it is challenging to determine whether the extracted degradation rep-
resentations are content-independent because the obtained high-quality images
may benefit from a diverse feature space. This was identified and addressed in
the latest work, such as reinforcing disease diagnosis [10] and semi-supervised
segmentation [11, 12], by using pre-trained classifiers that generate category-
specific explanations as guidance. Moreover, literature has recently shown that
Transformer is highly effective for low-level vision tasks [13, 14]. The self-attention
mechanism provides a straightforward explanation of the input. Zamir et al. [14]
proposed a multi-Dconv head transposed attention (MDTA) module, that changes
token-level self-attention to pixel-level, to guide the image reconstruction.

Inspired by these successes, we proposed to use an explanation-driven method
to isolate the degradation knowledge from the image. We first pre-trained a
degradation classifier with a Restormer [14] backbone by distinguishing MRI
scans with different sources. The pre-trained classifier is then interpreted by our
proposed Cross-Attention-Gradient (CAG) method, which integrates attention
maps with gradients to generate pixel-level explanations of degradation sources.
Similar to the saliency maps, the explanations quantify the contribution of each
pixel to the classification results and represent the degradation-specific knowledge.

With the isolated degradation knowledge, we proposed a cyclic learning
framework to circularly share knowledge between a front-end classification task
and a back-end image reconstruction task. As illustrated in Fig .1 (a), the front-
end generates degradation explanations to guide the back-end reconstruction and
evaluates the semantic-level distance between the reconstructed and corresponding
clean images. Meanwhile, the back-end reconstructs high-quality images with an
encoder-decoder architecture, whose encoder slowly updates the isomorphic front-
end classifier by an exponential moving average (EMA) method. Explanations,
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losses, and parameter weights circularly flow between the front-end and back-end
tasks, facilitating better optimization of the whole framework.

Fig. 1. Illustration of the proposed method. (a) Cyclic learning, circularly shares
knowledge between the front-end task and the back-end task through losses, explanations,
and weights until convergence. Steps 1 to 6 are executed during both the training and
testing phases. In contrast, steps 7 to 10 are only executed during the training phase.
(b) Cross-Attention-Gradient method, extracts attention maps and gradients through a
forward/backward propagation.

We summarized our main contributions as follows:
(1) We proposed Cross-Attention-Gradient (CAG), an NN interpreting method

to quantify the contribution of each pixel to the results of the classification of
degradation sources. This approach takes into account both the attention informa-
tion and the gradient information across layers and heads, providing transformers
with pixel-level interpretability, which is suitable for image reconstruction tasks.

(2) We designed a cyclic learning framework to share knowledge between the
front-end classification task and the back-end reconstruction task. This achieved
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a combination of learning, interpreting, and reinforcing, with each task benefiting
from the other.

Comprehensive experiments were conducted on both in vivo and in silico data.
The proposed reconstruction framework demonstrated superior performance on
three public datasets, as compared to four other competing methods.

2 Methods

We aim to reconstruct high-quality MRI from unknown sources of degradation.
Interpreting a pre-trained degradation classifier reveals degradation-specific in-
formation that assists the image generator in performing degradation-aware
reconstruction. We proposed a cyclic learning framework to share useful infor-
mation contained in the front-end classification task and the back-end image
reconstruction task.

We simulate different degradation sources (motion, low resolution, noise,
motion and noise, and motion and low resolution) using a unified forward model
that characterizes the process of MRI acquisition: ID = DHTIC + ϵ. IC and
ID denote the clean image and the degraded image; D denotes downsampling;
H denotes the sampling operator; T denotes a rigid body transform; ϵ denotes
additive noise. The reconstruction process is formulated as finding a solution of
the inverse problem of the forward model: I

′

D = fθ(D,H, T, ID). The nonlinear
function fθ is accomplished by learning a deep neural network.

2.1 Front-End Image Classification

We pre-train a degradation classifier with low-quality images with various simu-
lated degradations, and image-level labels of degradation sources are used for
supervised training of a multi-label multi-classification task. High-quality clean
images are also involved in pre-training as a separate category (The pre-training
stage is not included in Fig .1).

In the second training stage, the pre-trained classifier EC is assembled in
cyclic learning (Fig .1 (a)). Given ID and its corresponding degradation label
CLStarget, a pixel-level degradation explanation is generated as:

E = CAG[EC(ID); CLStarget] (1)

where CAG denotes the Cross-Attention-Gradient method and E denotes the
generated explanation, which is transferred to reinforce the back-end shortcut
features with degradation-aware knowledge. CLStarget is unknown during testing.
We use a pseudo-label, assuming that all test data have a mixture of motion, low
resolution, and noise degradation, to generate corresponding explanations.

In addition, given the high-quality image (denoted by I
′

D) reconstructed in
the back-end task conditioned on the generated explanation, EC is also employed
as a semantic discriminator to align the semantics of the reconstructed image I

′

D

with the clean image IC :

Lsen = BCELoss(EC(I
′

D), CLSclean) (2)
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where CLSclean denotes the degradation label of clean images and Lsen denotes
the semantic loss, which constrains the image reconstruction in the back-end.

2.2 Back-End Image Reconstruction

The back-end reconstruction network has an encoder-decoder architecture with a
Restormer [14] backbone, and its encoder ER is initialized by the weights from
the isomorphic front-end classifier. The reconstructed image I

′

D is conducted by:

I
′

D = ID +DR[ER(ID); E] (3)

where ER and DR denote the reconstruction encoder and decoder. E denotes the
degradation explanation of the input low-quality image I

′

D and is downsampled
by bilinear interpolation for different skip-connection scales. The back-end task
predicts the residual between the clean image and the degraded image instead of
predicting the whole degraded image from scratch, making it easier to optimize.

The loss function of our back-end task is formulated as:

Ltotal = Lpixel + λsenLsen (4)

where Lpixel denotes the mean absolute error between I
′

D and ID, and λsen is set
to 0.01. Ltotal is used to optimize the reconstruction network at both the pixel
and semantic levels to eliminate artefacts and noise, while preserving semantic
and content consistency with the clean image.

At the end of each iteration, the front-end classifier will be updated by:

θEC
= mθEC

+ (1−m)θER
(5)

where θEC
and θER

denote the parameters in EC and ER, and m is set to 0.99.
The cyclic flow of the explanations, losses, and weights facilitates knowledge
sharing between our front-end and back-end tasks, which allows the whole system
to converge toward a better optimum.

2.3 Cross-Attention-Gradient Interpreting

The attention maps in Multi-head Self-Attentions (MSAs) [15] can describe the
relevance and long-range dependencies of tokens. Previous studies typically use
attention maps to visualize and comprehend transformers [16, 17]. Zamir et al. [14]
provides pixel-level self-attention, making it possible to directly use attention
maps to interpret the network. As illustrated in Fig .1 (b), a low-quality image ID
is fed in the pre-trained classifier EC , and attention maps [A1, A2, ..., An] of all
the n transformer blocks are extracted through forward propagation. Additionally,
we compute gradients [G1, G2, ..., Gn] with respect to the input of each layer
through a backward propagation, aiming for a more comprehensive explanation of
the image degradation pattern. Finally, the cross-layer and cross-head attention-
gradient explanation can be computed as:

E =
n∑

k=1

dropmindropneg(AV Gheads(AkGk))) (6)
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where dropneg denotes replacing all negative contributions with 0, and dropmin

denotes replacing the smaller contributions with 0 by a fixed percentage (90% in
this paper). The dual-drop strategy eliminates confusion from other pixels and
highlights pixels that better describe image degradation.

3 Experiments and Results

3.1 Dataset Description and Data Partition

We employed three public brain MRI datasets to assess our methods, including
the Cam-bridge Centre for Ageing and Neuroscience (Cam-Can) [18], UCLA [19],
and the Autism Brain Imaging Data Exchange I (ABIDE I) [20]. On the Cam-
Can and UCLA datasets, we used 70 T1w scans for in silico experiments with
simulated degradation (40 volumes for training, 15 volumes for validation, and
15 volumes for testing). On the ABIDE I dataset, we leveraged 10 T1w scans
corrupted by real in-scanner head motion for in vivo experiment. We extracted
90 axial slices from each volume, and normalized each slice to the size of 192
× 224 pixels (Cam-Can), 176 × 224 pixels (UCLA and ABIDE I). The pixel
intensities were rescaled to [-1, 1]. Every three adjacent slices were combined into
a three-channel image as the network input.

3.2 Experimental Settings

Degradation simulation. We simulated different sources and levels of degra-
dation for the T1w scans: single degradation (motion, low-resolution, noise),
and mixed degradation (motion and low resolution, motion and noise). A single
degradation had different levels: mild, moderate/normal, and severe. We added
head motion simulated from the translations and rotations of a random sampling
of phase-encoding lines in the frequency domain [21]. We cropped out the low-
frequency data in the center of k-space, and zeroed out the peripheral data, to
generate low-resolution scans [22]. We added white Gaussian noise to simulate
noisy acquisitions. Simulations details are shown in the supplementary material.

Implementation details. The front-end classifier was optimized by Adam, with
a batch size of 24 and a learning rate of 1e-5 in the pre-training stage. The whole
framework was then optimized by Adam, with a batch size of 16 and a learning
rate of 2e-4. We evaluated our method by comparing it to its four competing
counterparts, including two general baselines (i.e., SRGAN [23], pix2pix [24]), a
strong baseline for image restoration (HINet [25]), and a state-of-the-art method
for medical image synthetics (Resvit [26]).

3.3 Experimental Results on Simulated Data

Table 1 shows the quantitative results on the simulated datasets. The results show
that our method offered superior performance, as compared to its four competing
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peers, in terms of PSNR, SSIM, and RMSE. Fig .2 shows the reconstructed
images for representative scans from the test datasets. These qualitative results
show that SRGAN and pix2pix were unable to completely remove the motion
artifacts or restore the images from the blurry and/or noisy acquisitions. HINet
and Resvit achieved better reconstruction results but yielded distortions caused
by excessive smoothing. In contrast, our method successfully eliminated the
motion artifacts, while in parallel, generated images with noise substantially
removed and edges considerably sharpened.

Table 1. Experimental results on simulated data.

Dataset Cam-Can UCLA
PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE

SRGAN 26.01±1.40 0.823±0.051 0.101±0.017 25.94±1.42 0.821±0.048 0.102±0.015
pix2pix 29.28±2.13 0.889±0.048 0.071±0.017 29.02±2.35 0.859±0.051 0.073±0.019
HINet 30.26±2.63 0.902±0.049 0.064±0.019 29.75±2.84 0.880±0.050 0.069±0.021
Resvit 30.65±2.74 0.906±0.069 0.062±0.023 29.76±2.38 0.879±0.047 0.067±0.018
Ours 31.34±2.64 0.918±0.041 0.057±0.017 30.75±3.17 0.895±0.047 0.061±0.019

Fig. 2. Qualitative assessments for representative scans from the test datasets. The
corrupted images were taken from test sets of Cam-Can and UCLA. The first and third
rows show degradation sources: motion and low resolution. The second and fourth rows
show degradation sources: motion and noise.
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3.4 Experimental Results on Real Motion Data

Table 2 shows the reconstruction results for real acquisitions that are labeled
mild/moderate motion [21] from ABIDE I, where no ground-truth was available.
The reconstruction model was trained by simulated data from Cam-Can. Three
reference-free evaluation metrics (Tenengrad, Entropy, and Grey-level Range) are
used to measure the reconstruction quality. Qualitative assessments are shown
in the supplementary material due to space limit. The results show that our
method achieved better performance in removing motion artefacts, improved
image sharpness, and provided superior reconstructions as compared to the four
competing methods.

Table 2. Experimental results on real motion data. A smaller Tenengrad value indicates
fewer pseudo edges caused by motion artefacts.

Method Tenengrad/102(↓) Entropy(↑) Range/102(↑)
SRGAN 1.633±2.486 5.418±0.706 1.159±0.974
pix2pix 1.536±2.899 5.582±0.621 1.241±1.044
HINet 1.540±3.099 5.440±0.654 1.305±1.199
Resvit 1.432±2.756 6.019±0.658 1.576±1.215
Ours 1.272±2.845 6.078±0.750 1.599±1.399

3.5 Ablation Study

We performed a thorough ablation study to analyse the contributions of our
proposed CAG and cyclic learning to the reconstruction. We started with the
vanilla Restormer backbone, and incrementally added cyclic learning (Steps
2 and 4 in Fig .1 have been removed. The pre-trained classifier acted as a
semantic-level discriminator but was not utilized for explanation.) and CAG on
the framework. Table 3 shows the effectiveness of our proposed CAG and cyclic
learning. Visualization of some representative explanations generated by CAG
are shown in the supplementary material to illustrate which pixels characterize
the degradation pattern and are given more attention during reconstruction.

4 Conclusion

We have developed a new methodology that enables high-quality brain MRI
reconstruction from scans corrupted by a mixture of multiple unknown sources
of degradation. We have demonstrated the efficacy of our method on both in
vivo and in silico data. Experiments have shown that our approach allowed for
reconstructing high-quality MRI scans from a variety of unknown sources of
degradation that commonly happen in clinical and research MRI studies.
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Table 3. Ablation study results on different components of the proposed method.

Dataset Cam-Can UCLA
PSNR(dB) SSIM RMSE PSNR(dB) SSIM RMSE

Restormer 30.40±2.64 0.903±0.046 0.063±0.018 29.81±2.71 0.880±0.048 0.068±0.020
+Cyclic 30.98±2.65 0.914±0.043 0.059±0.017 30.37±2.92 0.888±0.048 0.064±0.019
+Cyclic

+CAG(ours) 31.34±2.64 0.918±0.041 0.057±0.017 30.75±3.17 0.895±0.047 0.061±0.019
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