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Abstract. Within colorectal cancer diagnostics, conventional colonoscopy
techniques face critical limitations, including a limited field of view and a
lack of depth information, which can impede the detection of precancer-
ous lesions. Current methods struggle to provide comprehensive and ac-
curate 3D reconstructions of the colonic surface which can help minimize
the missing regions and reinspection for pre-cancerous polyps. Address-
ing this, we introduce “Gaussian Pancakes”, a method that leverages 3D
Gaussian Splatting (3D GS) combined with a Recurrent Neural Network-
based Simultaneous Localization and Mapping (RNNSLAM) system. By
introducing geometric and depth regularization into the 3D GS frame-
work, our approach ensures more accurate alignment of Gaussians with
the colon surface, resulting in smoother 3D reconstructions with novel
viewing of detailed textures and structures. Evaluations across three di-
verse datasets show that Gaussian Pancakes enhances novel view syn-
thesis quality, surpassing current leading methods with a 18% boost in
PSNR and a 16% improvement in SSIM. It also delivers over 100× faster
rendering and more than 10× shorter training times, making it a practi-
cal tool for real-time applications. Hence, this holds promise for achieving
clinical translation for better detection and diagnosis of colorectal cancer.
Code: https://github.com/smbonilla/GaussianPancakes.
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1 Introduction

Colorectal cancer remains a major global health challenge, consistently ranking
among the top three cancers in prevalence and mortality [1]. The slow progression
of colorectal cancer offers detecting pre-cancerous growth through colonoscopy.
Despite several AI-based methods proposed in the literature for polyp detection
during colonoscopy [6], challenges persist, particularly in identifying polyps hid-
den behind folds, which account for up to three-quarters of all missed cases [19].

https://github.com/smbonilla/GaussianPancakes
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Colonoscopists encounter difficulties in thorough surface inspection, due to the
use of a monocular camera with limited field of view and lack of 3D information
while navigating the colon’s complex structure. Generating full 3D reconstruc-
tions with high-quality textures from endoscopic images in near real-time would
enable improved diagnosis and treatment through downstream tasks like auto-
mated surgical path planning [2], AR/VR training environments[25], AI-based
polyp detection [6], and for determining missing regions for re-inspection [17].

The exploration of novel view synthesis and 3D reconstruction in endoscopy
has significantly advanced with the advent of Neural Radiance Fields (NeRF) [18]
and Neural Implicit Surfaces (NeuS) [26] which learn a continuous function that
implicitly represents the 3D scene trained from 2D images and paired camera
poses. However, NeRF and NeuS, including their colonoscopy-specific adapta-
tions ColonNeRF[24], REIM-NeRF[20] and LightNeuS[7], are limited by lengthy
training times, slow rendering speeds, and a lack of explicit geometry, which
complicates integration into practical workflows. Both NeRF and NeuS rely on
pre-known camera poses and depths, further restricting their versatility. To ad-
dress these challenges, the field of computer vision and surgical vision[11,16,29]
has recently shifted its attention to 3D Gaussian Splatting (3D GS)[13]. This
technique represents 3D scenes through populations of 3D Gaussians, offering
real-time rendering, explicit manipulable geometry for easier integration, and
significantly reduced training times. Nonetheless, it faces challenges, including
a lack of geometry constraints leading to artifacts in untrained views and the
necessity of a robust point cloud and known camera poses as starting points.

In response to these limitations, we propose Gaussian Pancakes, an approach
that synergizes a geometrically-regularized 3D GS with a colonoscopy-tailored
Simultaneous Localization and Mapping (SLAM) system, RNNSLAM [17], to
enhance texture rendering and anatomical accuracy while boosting training and
rendering speeds. Our method capitalizes on the strengths of RNNSLAM, which
generates camera poses, depth maps, and rudimentary surface reconstruction
from only the monocular video inputs in real-time, providing a robust alterna-
tive to traditional Structure-from-Motion (SfM) methods. Although RNNSLAM
alone yields surface reconstructions, the lack of photorealism and anatomical
detail limits its use in novel view synthesis tasks. Gaussian Pancakes over-
comes these drawbacks by replacing surfels with 3D Gaussians and incorpo-
rating surface-based regularization, resulting in significantly accurate radiance
fields and vivid textures. Our key contributions are: 1) A pipeline that inte-
grates 3D GS with SLAM for photorealistic 3D colonoscopic reconstructions,
demonstrating robustness over using a SfM method seen in Fig. 1 (C-D); 2) Im-
proved 3D GS method by incorporating geometric and depth regularizations,
aligning Gaussians with the surfaces by effectively “pancaking” them. This en-
hancement reduces geometric error and artifacts in novel view synthesis, seen in
Fig. 1; 3) Optimized training and rendering process for radiance fields in surgi-
cal scenes, reducing training times to roughly 2 minutes and improving image
rendering speeds by more than 100 times, making it more applicable in clinical
settings.
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Fig. 1. Illustrating the benefit of Gaussian Pancakes, arrows indicating Gaussians’
principal normal direction, A) Gaussian Splatting without Pancaking (PSNR = 37.54)
and B) Gaussian Splatting with Pancaking (PSNR = 38.50), on a synthetic video
sequence generated by a colonoscopy simulator [28]; C) Sparse point cloud from SfM
and D) point cloud from RNNSLAM on the In-Vivo dataset [17].

2 Method

Gaussian Pancakes employs 3D GS for realistic texture rendering and RNNSLAM
for 3D reconstruction. As shown in Fig . 2, it starts with RNNSLAM-generated
camera poses, depth maps, and meshes. This mesh is sampled, using stratified
sampling, to create a sparse RGB point cloud [3]. Around these points, Gaussians
with corresponding attributes are initialized (Sec. 2.2). Supervision is twofold:
photometric and geometric regularization, with the addition of geometric regu-
larization ensuring Gaussians align with the surface and limit floating artifacts.

2.1 Preliminaries of RNNSLAM

RNNSLAM [17] uses sparse depth estimation from a SfM method as a proxy for
ground truth to train a recurrent neural network for depth and camera pose pre-
diction. Bundle-adjusted direct sparse odometry is used to jointly optimize the
predicted poses and depth by minimizing the intensity difference over a window
of recent frames. The fusion pipeline is then used to reconstruct colon meshes
with textures, enabling the detection of missing regions. While this approach has
shown effectiveness in reconstructing dense 3D colon maps from visible sections
in real colonoscopy, RNNSLAM suffers from pose estimation drift, resulting in
texture misalignment and structural collapse in the fused meshes, which is a com-
mon problem among similar methods [22]. Our proposed method uses the refined
depth maps, camera poses and sparsely sampled points on converged meshes of
RNNSLAM to provide high-quality texture renderings of the structures.

2.2 Preliminaries 3D Gaussian Splatting

3D GS employs Gaussian distributions for scene representation and leverages
GPU-accelerated rendering for efficient optimization [13], [15], [9]. 3D GS method
models scenes using 3D Gaussians around the input RGB point cloud, repre-
sented by position µ, scale s, orientation as quaternion q, spherical coefficients
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Fig. 2. Proposed Gaussian Pancakes’ pipeline highlighting our contributions: A)
RNNSLAM for mesh, camera poses, & depth maps; B) 3D GS initialization, C) Geo-
metric & depth regularizations, distinguishing our approach from traditional 3D GS.

SH, and opacity σ. Each Gaussian has a covariance matrix Σ describing the
skew and variance of the distribution in 3 dimensions, calculated using the scal-
ing matrix S and rotation matrix R by

Σ = RSSTRT (1)

A Gaussian can be described by the multivariate Gaussian probability density:

G(x) = e−
1
2 (x−µ)TΣ−1(x−µ)) (2)

These Gaussians are expressed in 3D space but are projected onto 2D for im-
age rendering given by a viewing transformation W and the covariance ma-
trix Σ. The covariance matrix in the camera coordinate system is given by
Σ′ = JWΣWTJT , where J is the Jacobian matrix of the affine approximation
of W . The splatting process involves differentiable point-based alpha blending.
The final image pixel color is accumulated from contributions along a ray, consid-
ering the densities and transmittances. The color of each Gaussian is represented
using spherical harmonic coefficients, capturing view-dependent effects [21]. The
Gaussian attributes are optimized using the Adam optimizer [14] through a ren-
dering process, combined with steps to adjust Gaussian density.

2.3 Proposed Gaussian Pancakes: Extending 3D GS for Endoscopy

Instead of relying on the sparse point cloud output from an SfM method, our
approach utilizes RNNSLAM for pose estimation, depth maps, and RGB point
cloud generation [23]. This substitution addresses SfM’s limitations in low-variation
environments where uniform textures can impede accurate feature matching and
depth perception, thoroughly described in the RNNSLAM paper [17].
Depth regularization: Endoscopic images have minimal diversity in image
directions, causing 3D GS to overfit. This results in artifacts where depth is mis-
represented, representing images onto a 2D plane [10]. To mitigate this problem,
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we introduce a depth loss based on the Huber loss. For the depth maps {Di}Mi=1,
with M is the number of viewpoints, the depth loss LD(i) is defined as:

LD(i) =

{
0.5∆D2

i , if |∆Di| < δ
δ(∆Di − 0.5δ), otherwise

}
(3)

∆Di = |Di − D̂i| denotes the loss at i-th frame, and D̂i, the rendered depth.
Geometric regularization: Despite the depth loss, challenges persist due to
the lack of surface constraints. Artifacts which present as floating objects of-
ten emerge as the rendered view gets further away from original camera po-
sitions. To mitigate this, we incorporate a geometric loss that constrains the
Gaussians in accordance with the surface’s principal curvature, effectively “pan-
caking” the Gaussians along the surface. For a point cloud P = {pm} where
{pm} = (xm, ym, zm) represents the m-th point, we compute the normal vector
np for each point pm in P . This computation assumes the local neighborhood of
any point can be approximated by a tangent plane inferred from its 10 nearest
neighbors. We denote these neighbors as {nj}kj=1, where k = 10. Centering the

nearest neighbors by n′
j = nj− 1

k

∑k
j=1 nj . The covariance of n

′, C, is calculated

C =
1

k − 1

k∑
j=1

n′
jn

′T
j (4)

Eigen decomposition of C yields eigenvalues and eigenvectors vi. The normal
vector, np, for each point, pm, is the eigenvector corresponding to the smallest
eigenvalue. The concatenated matrix of normal vectors and their points, N , is
indexed using a GPU-accelerated structure, enhancing search efficiency [12].

Normal vectors for each 3D Gaussian are efficiently recalculated per iteration
with a custom CUDA kernel for the dynamic scene. For each Gaussian’s rotation
matrix R, we find the axis of least spread by locating the minimum index of its
scale vector s. This axis, selected from the standard Cartesian set ex, ey, ez as
emin, is the primary basis for computing the normal vector nGP = Remin.
Using normals A from the nearest point cloud points and Gaussian normals B,
we calculate geometric loss with cosine similarity as follows:

LG = 1−

∣∣∣∣∣ A ·B
||A|| ||B||

∣∣∣∣∣ (5)

Loss Function: Our model’s total loss L merges image reconstruction, depth,
and geometric losses, balanced by weights λ1, λ2, λ3. This compact formulation:

L = (1− λ1)LImage + λ1LD−SSIM + λ2LD + λ3LG (6)

with LImage an L1 loss and LD−SSIM , a structural similarity term, between
rendered and ground truth images. This loss optimizes trade-offs between visual
fidelity, depth error, and geometric alignment with empirically set weights.
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Table 1. Assessment of photometric, reconstruction errors, training and rendering
times against top methods across Simulation, Phantom, In-vivo datasets.

Model Dataset PSNR ↑ SSIM ↑
MS-SSIM*

LPIPS ↓ Depth ↓
MSE

FPS↑ GPU ↓
min

ColonNerf[24] Phantom 25.54 0.86* 0.40 - - -

NeRF[18]
Simulation 35.29 0.92 0.14 0.007 <2 167
Phantom 32.10 0.81 0.39 4.263 <2 88
In-Vivo 18.93 0.67 0.43 0.109 <2 89

REIM-
NeRF

[20]
Simulation 32.22 0.82 0.33 0.001 <2 170
Phantom 31.66 0.78 0.22 0.013 <2 120
In-Vivo 18.94 0.65 0.45 0.006 <2 97

Gaussian
Pancakes
(ours)

Simulation 40.34 0.97 0.05 0.007 > 100 0.83
Phantom 32.31 0.90/1.00∗ 0.20 0.498 > 100 1.70
In-Vivo 26.25 0.83 0.21 0.156 > 100 1.25

Table 2. Ablation study on In-Vivo data.

Method PSNR ↑ Depth ↑
SSIM

Depth ↓
MSE

GPU ↓
min

GS 26.116 0.444 0.158 1.211
GS+Depth 26.062 0.446 0.145 1.206

GS+Pancaking 26.211 0.460 0.154 1.329
GS+Pancaking+Depth(ours) 26.248 0.458 0.156 1.249

3 Experiments

Dataset and Evaluation Metrics: Our evaluation encompasses three distinct
datasets: Simulation [28], In-Vivo [17], and Phantom [8]. The Simulation dataset,
featuring sequences of the cecum, rectum, and sigmoid regions at a resolution
of 320 × 240, is derived from software simulations in Unity using the graphics
engine[28] for image rendering. Depth and pose references, however, are obtained
from RNNSLAM. The In-Vivo dataset comprises real colonoscopy sequences
each at 270 × 216 resolution from the RNNSLAM study[17]. We selected three
distinct sequences ("cecum_t4_b", "desc_t4_a", and "transt_t1_a") covering
the cecum, descending colon and transcending sections from the public Phantom
dataset (C3VD[8]), with 1350 × 1080 resolution colonoscopy videos. C3VD’s
simple camera trajectories caused large gaps in reconstructions due to insufficient
scene coverage for RNNSLAM’s mesh surface fusion step, limiting us to choose
three datasets with satisfactory RNNSLAM performance for evaluation.

Frame data for each scene is divided into training and testing sets with an 8:1
ratio, following the approach recommended in prior research [5]. For a compre-
hensive quality assessment of comparative view synthesis, we use several com-
mon metrics: Peak Signal-To-Noise Ratio (PSNR), Learned Perceptual Image
Patch Similarity (LPIPS), specifically the VGG loss [27], and Structural Simi-
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larity Index Measure (SSIM)/Multi-Scale Structural Similarity Index Measure
(MS-SSIM) - for direct comparison with ColonNeRF. We measure Depth Mean
Squared Error (MSE), frames per second (FPS) to evaluate rendering speed, and
GPU minutes for training time (aggregated minutes across all GPUs used).
Implementation: For a fair comparison with REIM-NeRF and NeRF we down-
sampled the resolution of the phantom dataset (C3VD) to 338 × 270, similar
to what was tested in [20]. We keep the original resolution of simulation and
in-vivo datasets, since they are already close to [20]. Our methodology initiates
with RNNSLAM, rendering 10 FPS on an Intel i7 CPU and Nvidia GeForce
GTX 1080 GPU. Gaussian Pancakes uses inferred depth maps for supervision,
along with inferred camera poses and points for initial setup, across all training
sequences. Subsequently, Gaussian Pancakes models trained following [13]’s hy-
perparameters, but are trained for 7,000 iterations instead of 30,000, densifying
Gaussians until the 4,000th iteration. We set δ at 0.2 in Eq. 3, with hyperparam-
eters in Eq. 6 λ1, λ2, and λ3 finely tuned to 0.2, 0.6, and 0.2 (empirically set),
respectively, balancing photometric, reconstruction, and geometric results. Geo-
metric loss integration commences after the first 1000 iterations for non-uniform
scaling. All models are trained for 1-2 minutes on an NVIDIA RTX A6000.

4 Results and Discussion

In Table 1, Gaussian Pancakes demonstrates performance improvements in pho-
tometric errors PSNR, SSIM, and LPIPS, and achieves over 100 FPS rendering
speeds and training times less than 2% that of the other models for all datasets.
Qualitative comparison is in the supplementary video from minute 3:46-4:43
and supplementary Fig. A.1, where it can be observed that NeRF and REIM-
NeRF exhibit poorer performance on the In-Vivo dataset, even when compared
to their own results on the other datasets, likely due to the reliance on ground
truth camera poses and, for REIM-NeRF, accurate depth maps. The heightened
noise in In-Vivo dataset’s camera poses and depth maps highlights Gaussian
Pancakes’ superior ability to manage data noise. However, Gaussian Pancakes
exhibited a higher Depth MSE across all datasets compared to REIM-NeRF,
a result of using inferred depth maps for both training and evaluation; mak-
ing Depth MSE a measure of residual training error rather than a comparison
with actual ground truth. Our method effectively handles data noise, prioritiz-
ing high-quality images and smooth reconstructions even with suboptimal depth
references. A comparison with ColonNeRF for all datasets was not possible due
to unavailable code.
Ablation Analysis: Table 2 shows the incremental benefits of depth and ge-
ometric regularizations added to the foundational 3D GS method, initialized
with RNNSLAM outputs, to reduce artifacts in unseen viewpoints. However,
standard metrics fall short in capturing these improvements, where test views
are too close to training views to reveal the artifacts. Nevertheless, the quan-
titative data reveals nuanced improvements: introducing depth regularization
marginally reduces Depth MSE, and normal regularization (GS+Pancaking) im-
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proves Depth SSIM, suggesting better surface consistency. The combination of
both (GS+Pancaking+Depth) achieves the best overall balance, as evidenced
by modest gains in PSNR and Depth SSIM, alongside a negligible increase in
processing time. Phantom and Simulation datasets show metric-based improve-
ments that are more pronounced, further detailed in the Appendix Table A.1.
For a comprehensive understanding, see the depth image comparison in supple-
mentary Fig. A.3 and video from 4:43-5:40, which qualitatively shows artifact
mitigation. Additionally, surfaces are visually smoother, seen in Fig. A.2.

5 Conclusion

Our evaluations across three varied datasets show that it achieves superior ren-
dering quality, smoother reconstructions, fewer artifacts, and greatly reduces
computational cost. Additionally, the method outputs explicit geometry, which
sets it apart from the other leading methods with its potential for seamless inte-
gration into clinical practices. However, it’s important to note that the method’s
success partly hinges on the quality of RNNSLAM’s surface fusion, facing oc-
casional challenges in less consistent environments. Moving forward, we plan to
integrate SuperPoint [4] for better point cloud creation and to refine depth map
precision. This direction aims to not only bolster our method’s accuracy but also
its applicability in a broader range of clinical scenarios.
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