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Abstract. The Orientation Distribution Function (ODF) characterizes
key brain microstructural properties and plays an important role in un-
derstanding brain structural connectivity. Recent works introduced Im-
plicit Neural Representation (INR) based approaches to form a spatially
aware continuous estimate of the ODF field and demonstrated promising
results in key tasks of interest when compared to conventional discrete
approaches. However, traditional INR methods face difficulties when
scaling to large-scale images, such as modern ultra-high-resolution MRI
scans, posing challenges in learning fine structures as well as inefficien-
cies in training and inference speed. In this work, we propose HashEnc, a
grid-hash-encoding-based estimation of the ODF field and demonstrate
its effectiveness in retaining structural and textural features. We show
that HashEnc achieves a 10% enhancement in image quality while re-
quiring 3x less computational resources than current methods. Our code
can be found at https://github.com/MunzerDw/NODF-HashEnc.
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1 Introduction

The Orientation Distribution Function (ODF) plays an important role for un-
derstanding brain structural connectivity and brain-based disorders [31]. It de-
scribes the angular probability distribution of water molecule diffusion in brain
tissue [12], where water diffusion is strengthened along the direction of white
matter fiber tracts. Thus, the ODF serves as an indirect characterization of the
white matter fiber structure at a given voxel in the brain, which provides critical
information for tractography and microstructure estimation [37].

Consagra et al. [5] introduced an Implicit Neural Representation (INR) frame-
work (called NODF), using Sinusoidal Representation Networks (SIREN) [26],
to model a spatially aware continuous ODF field, estimated from diffusion signal.
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Their method enables resolution-agnostic estimation and uncertainty quantifica-
tion of the ODFs. However, while large SIRENs can estimate the ODF field on
individual slices and regions of interest, their ability to learn a continuous field
for images on the scale of modern high-resolution whole brain scans [32] suffers
from days-long training times [23], rendering them impractical for these appli-
cations. This issue arises because all the network weights need to be evaluated
and updated during each pass. Moreover, the fine-tuning of important hyper-
parameters, including those for regularization and the sine frequency, becomes
difficult or even computationally infeasible due to repeated network training.

To mitigate these issues, we investigate a solution, referred to as HashEnc,
based on the grid-like local embeddings as proposed by Müller et al. [18] to
replace SIREN in the NODF framework. The use of grid-like embeddings allows
HashEnc to store local information of the training subject. As every region has
designated embeddings, only the local neighborhood embeddings and the small
MLP weights need to be updated during training. Therefore, the required MLP
size to predict the final output signal for a coordinate becomes much smaller
and thus efficient to train. We train HashEnc on a submillimeter resolution
and low signal-to-noise-ratio diffusion MRI (dMRI) scan [32] and evaluate the
results on highly detailed areas such as the cerebellum. While SIREN tends to
over-smooth the estimated ODF, we demonstrate the capability of HashEnc to
learn fine structural and textural details in significantly less training time. In
summary, our contributions are:

– We propose HashEnc, a grid-hash-encoding-based INR that represents a
“field” of ODFs in a spatially continuous manner across any ultra-high-
resolution dMRI scan.

– We quantitatively and qualitatively compare HashEnc with SIREN, where
HashEnc achieves a 10% enhancement in image quality while being up to 3x
faster to train.

– We study the key characteristics of HashEnc through ablation studies.

2 Related Work

Orientation Distribution Function. The estimation of ODFs from diffu-
sion signals poses a challenging inverse problem, that has mostly been tackled
voxel-wise [7,15] or by incorporating neighborhood information [2,3]. Further-
more, other lines of work introduce machine learning techniques to directly es-
timate ODFs from diffusion signal through supervised or unsupervised training
[21,19,27]. Recently, [5] utilized INRs to continuously parameterize the ODF field
and derive a conditional posterior distribution for uncertainty quantification.

Implicit Neural Representations in Medical Imaging. INRs are increas-
ingly utilized in computer vision and medical imaging, enabling continuous mod-
eling of discrete data with minimal memory usage [16,14,8,24,36,20,17,11]. Their
flexibility and differentiability facilitate various tasks, such as image reconstruc-
tion [34,35,27,9], segmentation [38,10,1], and registration [33,28,4], effectively
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addressing issues like scarce data and lengthy acquisition times. INRs are also
used for inverse imaging tasks [22,5,29] or 3D volume reconstruction from sparse
2D images [6,13].

3 Method

3.1 Background and Notation

Orientation Distribution Function. The Orientation Distribution Function
(ODF) at a voxel v, g(v, ·), describes the angular distribution of water molecule
diffusion and is connected to the diffusion signal, denoted as f(v, ·) 7→ R+, by the
Funk-Radon transform (FRT). To compute the ODF, we truncate the spherical
harmonic basis [31] at a finite rank K, modeling it as:

g(v,p) =

K∑
k=1

ck(v)ϕk(p), (1)

where ϕk(p) are the harmonic basis functions and ck(v) are the harmonic co-
efficients. Measurements on M spherical locations p1, ....,pM , called gradient
directions, at each of a regular set of voxel locations v1, ...,vN , translate to a
noisy Gaussian model linking observed signals to the coefficients ck(v):

yi := (yi,1, ..., yi,M ) ∼ N (ΦGc(vi), σ
2
eIM ), (2)

where c(v) = (c1(v), ..., cK(v))⊺,G ∈ RK×K is the diagonal inverse matrix of the
FRT, Φ ∈ RM×K is the evaluation of the K real-symmetric spherical harmonic
basis functions along allM gradient directions, IM is theM -dimensional identity
matrix, and σ2

e is the measurement error variance.

Neural Orientation Distribution Fields. The NODF framework introduces
an implicit model to capture the spatial correlation in the ODF field through a
rank r spatial basis learned via an implicit neural representation ξθ : R3 7→ Rr.
This basis is used to construct the harmonic coefficient fields via a multivariate
linear basis expansion c(v) = Wξθ(v), with W being a matrix in RK×r.

Following the framework, with a matrix normal prior on W inducing a Gaus-
sian process prior on g(v, ·), and given the normal likelihood (2), the posterior
distribution can be derived as given in [5]:

vec(W )|V ,Y ,θ, γ, σ2
w, σ

2
e ∼ NKr

(
1

σ2
e

Λ−1
θ [Ξ⊺

θ ⊗ΦG]⊺vec(Y ),Λ−1
θ

)
, (3)

Λθ =
1

σ2
e

(
σ2
e

σ2
w

Ir ⊗Rγ +ΞθΞ
⊺
θ ⊗ [ΦG]⊺ΦG

)
(4)

where vec is the vectorization operator, ⊗ denotes the Kronecker product, and
Rγ is the covariance matrix from a spherical Matern Gaussian process with pa-
rameters γ, Y = [y⊺

1 , ...,y
⊺
N ] ∈ RM×N , Ξθ = [ξ⊺θ(v1), ..., ξ

⊺
θ(vN )]⊺ ∈ Rr×N ,
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and V = [v1, ...,vN ] ∈ RN×3. The unknown conditioning parameters of (3) are
then estimated and plugged in for inference, i.e. point estimation and uncer-
tainty quantification. Specifically, the network parameters θ̂ are estimated using
stochastic gradient descent on a regularized variant of the negative log likelihood,
where the regularization strength λc is selected using a Bayesian optimization
scheme. We follow the same procedure as in [5] to estimate the remaining vari-
ance parameters σ2

e , σ
2
w. When estimating a quantity of interest (QOI) from the

ODFs for downstream tasks, e.g. fractional anisotropy or principal diffusion di-
rections, we quantify the uncertainty in the QOI by sampling the ODF field
(through the posterior (3)) and determining a confidence interval.

3.2 Grid-Hash-Encoding of Harmonic Coefficient Fields
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Fig. 1. Overview of HashEnc. 1) Given point v, for each resolution grid l, embedding
vectors of the surrounding corner points are retrieved from the lookup table by hashing
their grid coordinates tv,l,i. Then, the corner embeddings are combined into one vector
via linear interpolation. The final embedding vector tv is obtained by concatenating
the input coordinates v and other grid vectors tv,l. The grid is shown in 2D instead of
3D for the sake of clarity. 2) tv is fed into a SIREN and processed by a linear layer W
to output the spherical harmonic coefficients c(v).

Using a single SIREN MLP for spatial basis ξθ in large images leads to com-
putational challenges. Due to the need for a large network rank r, the inversion
of Λθ can become complex and unstable. In addition, gradient computation for
θ during backpropagation is slow, as it requires evaluating all parameters for
every voxel. To address this, we propose adopting a grid-hash-encoding method
(HashEnc) [18] with a much smaller MLP that trains more quickly, leveraging
local embedding vectors for storing regional information.

The input of the network is a 3D coordinate v ∈ R3 and the output is the
real-symmetric spherical harmonic expansion coefficients of the ODF c(v) ∈ RK ,
where K = 45 (Figure 1). Each resolution grid l takes the 3D coordinates as
input and retrieves the grid coordinates of the 8 surrounding corners. These
surrounding coordinates are hashed into index values and the corresponding
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embedding vectors are retrieved from a dictionary of size 2m belonging to that
grid. Via linear interpolation, at each resolution grid l the embedding vectors
are interpolated into one vector tv,l. The vectors of all n resolution grids are
then concatenated together into one vector along with the input coordinates,
forming tv = (tv,1, ..., tv,n,v). tv is then passed into an MLP head (SIREN of
2x64 hidden layers) to predict the spatial basis ξθ(v), which is subsequently
multiplied with the linear layer W to obtain the K ODF coefficients c(v). Using
the inverse of the Funk-Radon transform G, we obtain the coefficients of the
signal f expansion over the real-symmetric spherical harmonic basis. From the
p points on the sphere, indicating the M gradient directions, we can obtain the
diffusion signals f(v,p1), ..., f(v,pM ).

To illustrate the computational advantage: for inference at a single voxel,
HashEnc uses 13,000 parameters (31 input, 2x 64 hidden, 45 output size), <0.1%
of the total number of parameters. In contrast, SIREN requires all its parameters
for each voxel. Doubling HashEnc’s capacity from 2 to 4 embedding vector size
adds <2,000 parameters (59 input size), while doubling SIREN’s doubles the
parameters required per voxel, leading to significant computational challenges.

4 Experimental Setup

Data. We train on the publicly available high-resolution data (760 µm3) from
[32]3. The data consists of multiple scan sessions with 420 gradient directions at
b = 1, 000s/mm2. We train on one of the scan session data (with 70 gradient di-
rections) which has very low SNR. As there is no ground truth data, we consider
a 6 session average (across 420 directions) as a reasonable ground truth image
and apply penalized Spherical Harmonics Least Square (SHLS) from [7] to derive
ground truth ODFs. The dimension of the resulting image is 190×224×178×M .

Training and Evaluation. We compare HashEnc and SIREN, the latter being
an MLP with 10 layers of 1024 units each and sine activations. SIREN is trained
with a learning rate of 1e-6 for 10,000 epochs. We use Bayesian optimization
on a single slice to select λc. While potentially sub-optimal, this approach is
computationally necessary, especially for SIREN, as full volume training takes
days. HashEnc employs 14 resolution grid levels, starting from resolution size 6,
with a 220-sized lookup table per level. Both methods are trained on an RTX 4090
GPU with M = 70, M = 40, and M = 20 gradient directions using PyTorch.

We evaluate both methods on the Feature Similarity Index (FSIM)4 [39],
which mimics the human perception to images and focuses on features such as
edges, corners, and textures. It consists of two components: Phase Congruency
PC and Gradient Magnitude (GM). PC compares feature points regardless of
brightness or contrast. GM captures the image edge information by measur-
ing the gradient magnitude of the image. This constellation is important for

3 License: http://creativecommons.org/licenses/by/4.0/
4 Calculated via: https://pypi.org/project/image-similarity-measures/

http://creativecommons.org/licenses/by/4.0/
https://pypi.org/project/image-similarity-measures/
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distinguishing the tendency of SIREN to over-smooth and HashEnc to overfit
noise. FSIM scores for gray scale General Fractional Anisotropy (GFA) and RGB
Diffusion Tensor (DTI) images across all sagittal, axial and coronal slices are cal-
culated against the 6-session average, with median values reported in Table 1
and sample images provided in the supplementary material. GFA calculates the
degree of anisotropy of water diffusion at each voxel, where a higher value indi-
cates stronger anisotropy. The Diffusion Tensor Image (DTI) indicates via RGB
coloring the dominant fiber orientation direction at each voxel.

Furthermore, GFA images are visualized in Figure 2. DTI images and de-
convolved ODFs (using Constrained Spherical Deconvolution [30]) on a small
sagittal section in the Cerebellum are shown in Figure 3. To quantify the uncer-
tainty of each method, the posterior is sampled 250 times. Then, the voxel-wise
GFA is determined for each sampled ODF field. The uncertainty on the GFA is
analysed via the standard deviation to mean ratio.

5 Results

5.1 Comparison with Current Methods

Table 1. Median value of Feature Similarity Index (FSIM) to the 6 session average
of all sagittal, axial and coronal slices. FSIM-GFA is calculated on gray scale GFA
images, and FSIM-DTI is calculated on RGB DTI images. 1 means perfect similarity.
Visuals are provided in the supplementary materials. HashEnc performs better in all
settings except for M = 20 on FSIM-DTI.

Gradient Directions (M) Model FSIM-GFA FSIM-DTI

70
SIREN 0.55 0.61
HashEnc 0.66 0.68

40
SIREN 0.62 0.63
HashEnc 0.66 0.66

20
SIREN 0.62 0.64
HashEnc 0.64 0.62

Compared to SIREN, HashEnc shows a higher structural similarity to the 6
session average volume in terms of GFA gray scale and DTI RGB images. This is
especially apparent for M = 70, where SIREN shows worse performance to M =
40 and M = 20 (Table 1). One reason for the lower similarity scores of SIREN is
the over-smoothing effect that SIREN shows, which creates blurry spots in the
image (see Figures 2 and 3). We note that this over-smoothing effect in SIREN
might be mitigated by globally tuning its hyperparameters, i.e., selecting λc

by training on the whole image rather than just a slice. However, automatically
doing this through Bayesian Optimization is highly computationally problematic
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due to the excessively long training times. This further underscores the advantage
of HashEnc’s faster training times. On the other hand, SIREN shows a robust
performance as M gets lower and outperforms HashEnc on FSIM-DTI for M =
20. Further visuals are provided in the supplementary material.
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Fig. 2. GFA reconstruction images from a sagittal cerebellum slice at different training
times with M = 70 gradient directions. The scale on the top right indicates the degree
of anisotropy of water diffusion. Included are GFA of the training image (1 session)
and the 6 session average for reference. HashEnc fits a much more detailed ODF field
after significantly less training time compared to SIREN.

The dominant advantage of HashEnc are the training and inference times,
allowing for much faster estimation of the ODF field and evaluation for down-
stream tasks. HashEnc can already produce fine-grained estimations after 100
epochs of training, which is not the case for SIREN (Figure 2). After 1000 train-
ing epochs, HashEnc shows similar but more detailed results whereas SIREN
is yet to fit fine-grained regions. The time efficiency comes from using multi-
resolution grid embeddings that store local volume information at various reso-
lution levels, allowing for a smaller MLP head and the use of a larger learning
rate. As for inference speed, HashEnc requires about 4 seconds to infer the
ODF coefficients on the whole brain while SIREN requires 173 seconds (tested
on CPU). When SIREN is trained for 10,000 epochs, visually, both methods
produce results with comparable performance but different characteristics (Fig-
ure 3). SIREN produces overly-smooth estimates of the ODF field, resulting in
slightly blurry but less noisy look, as demonstrated in Figure 3. This can be ob-
served specifically in areas with high contrast, such as between white and gray
matter. The gradual transition of SIREN, which is visible on the borders of the
blue fiber tracts in the ODF images for M = 70 and M = 40, is also reflected
in the low FSIM scores in Table 1. HashEnc on the other hand learns individual
details better in fine-grained regions as can be seen in the width of the blue fiber
tracts in the DTI images of M = 70 and M = 40. However, it tends to overfit
to noise easier, such as in the cases of M = 40 and M = 20. For these (lower)
gradient directions, SIREN is more robust to noise. As for uncertainty quan-
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Fig. 3. Qualitative reconstruction examples on a small sagittal Cerebellum section,
showcasing DTI images, deconvolved ODFs, and GFA uncertainty. The scale on the
bottom left indicates variability in the GFA of the ODF samples. SIREN and HashEnc
are trained for 10,000 and 3,000 epochs, respectively, and compared for M = [70, 40, 20]
gradient directions. SIREN tends to over-smooth the ODF field, particularly at M =
70, but is more robust with fewer gradient directions. HashEnc matches the structural
and textural details of the 6-session average better and exhibits less uncertainty.

tification, HashEnc shows a consistent and lower uncertainty, whereas SIREN
exhibits larger uncertainty especially in the border regions between white and
gray matter at M = 40 and M = 20 gradients. Additionally, HashEnc computes
posterior (3) means and variances faster due to its smaller W matrix size.

5.2 Ablation Studies

How do grid resolution levels and lookup table size affect the charac-
teristics of the ODF field? Different resolution levels n (12−14) and lookup
table sizes 2m (m = 19 and m = 20) are analysed. A longer and thinner estima-
tion of the fiber tracts can be observed form = 20 (see Figure 2 in supplementary
material). On the other hand, having a higher number of resolution levels shows
finer but noisier details, whereas for n = 12 resolution levels the image looks
smoother with some information lost (e.g. the tip of the thin blue fiber tracts).
Quantitatively, n = 14 resolution levels and 220 lookup table size shows the
highest feature similarity score to the 6 session average.

How does the MLP head affect HashEnc? In this experiment, we try three
types of MLP heads, including SIREN [26], WIRE [25], and ReLU [18]. Our ex-
periments show that there is no significant difference both visually (DTI images)
and quantitatively (FSIM score) (see Figure 3 in supplementary material).
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6 Discussion and Conclusion

In this work, we propose HashEnc, a solution based on grid-like local embed-
dings and replace SIREN in the NODF framework of [5] to estimate the ODF
field on high-resolution diffusion MRI scans. While SIREN suffers from over-
smoothing high contrast regions, HashEnc learns better fine-grained structural
features with significantly less training time, making it feasible for downstream
tasks as reflected in the Feature Similarity Index (FSIM). We want to acknowl-
edge that HashEnc is limited in its ability to adapt to different noise levels in
the image. Our training image contains varying levels of noise across different re-
gions, which HashEnc does not consider, as the number of multi-resolution grids
is fixed for all regions and σ2

e is assumed to be spatially constant. We encourage
further research to address this limitation in future studies.
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