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Abstract. Diffusion tensor based cardiovascular magnetic resonance (DT-
CMR) offers a non-invasive method to visualize the myocardial microstruc-
ture. With the assumption that the heart is stationary, frames are ac-
quired with multiple repetitions for different diffusion encoding direc-
tions. However, motion from poor breath-holding and imprecise cardiac
triggering complicates DT-CMR analysis, further challenged by its in-
herently low SNR, varied contrasts, and diffusion-induced textures. Our
solution is a novel framework employing groupwise registration with an
implicit template to isolate respiratory and cardiac motions, while a
tensor-embedded branch preserves diffusion contrast textures. We’ve de-
vised a loss refinement tailored for non-linear least squares fitting and low
SNR conditions. Additionally, we introduce new physics-based and clin-
ical metrics for performance evaluation. Access code and supplementary
materials at: https://github.com/ayanglab/DTCMR-Reg

Keywords: Registration · Diffusion · Deep Learning · Motion Correc-
tion.

1 Introduction

Diffusion tensor based cardiovascular magnetic resonance (DT-CMR) uniquely
visualizes in vivo myocardial microstructure by assuming a stationary heart and
employing multiple repetitions across diffusion encoding directions to track water
molecule motion [11]. Despite using breath-holding and cardiac triggering to
mitigate physiological motion, prospective motion correction still necessitates
image registration.
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Fig. 1. The challenges in motion correction in DT-CMR and the proposed method with
corresponding solutions. Given multiple scans of a single slice with varying contrasts
(C1), our groupwise registration uses an implicit template to isolate motions (S1). To
address diverse diffusion contrasts (C2), we integrated tensor data to maintain contrast
and created pseudo frames for enhanced registration (S2). We further constrained our
model with S0 and b0 information (S3). A unique differentiable mutual information loss
is crafted for noise-reduced warped frames against generated ones (C3), fine-tuning our
approach.

Registration is a technique that aligns disparate images into a unified co-
ordinate system, based on the intensity similarity or the theoretical likelihood.
This criteria fails on DT-CMR since the textural information embedded should
be retained for tensor fitting. Challenges amplify due to noise, varied diffusion
contrasts, and surrounding tissues (Fig. 1). Rigid registration is the most com-
monly applied method to correct for in-plane shifts but fail on the physiological
motion. Nevertheless, cardiac and respiratory motions in the low SNR diffusion
frames still call for deformable registration [4].

In our study, we introduce an innovative registration technique for correcting
non-rigid motion in DT-CMR acquisitions. To manage the challenge of acquir-
ing a single slice through multiple repetitions with varied diffusion contrasts, we
employ a group-wise registration strategy anchored by an implicit template [2],
which effectively separates respiratory motion and local deformations. To pre-
serve diffusion contrast and encoding details, we incorporate tensor information
matching the anatomy and generate pseudo-diffusion frames within a genera-
tion branch to facilitate registration. This approach, distinct from those in [8]
and [17], introduces additional tensor constraints to enhance frame fitting under
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Fig. 2. Our evaluation introduces novel metrics grounded in physical properties and
clinical markers. Each pixel’s three eigenvalues, indicating water molecule motion, are
expected to be inherently positive. The helix angle represents the cardiomyocytes’
helical structure, which in healthy individuals, should display a linear gradient. To
quantify this helical arrangement’s consistency, we employ coefficient of determination
(R2) and root mean square error (RMSE) analyses of the helix angle gradient.

low SNR conditions, leveraging differentiable mutual information as the primary
loss function.

In Fig. 2, we introduce two evaluations for DT-CMR: one quantifying physical
integrity, and the other assessing clinical relevance. The first, the percentage of
negative eigenvalues, measures noise-affected pixels, with valid diffusion tensors
requiring three positive eigenvalues to reflect tissue water motion accurately.
The second metric evaluates the consistency of cardiomyocyte orientation via
the helix angle (HA). A linear gradient of this helical arrangement is indicative
of a healthy heart, and non linearities may arise from residual motion and noise.
To the best of our knowledge, this is the first physics-based metric and clinical
biomarker designed to evaluate the performance of the registration.

Our proposed method shows superior performance when applied to DT-CMR
assessed using two traditional and two deep-learning based methods. Novel eval-
uations on the tensor data also demonstrate the potential application of these
methods.

2 Methods

2.1 Problem Formulation

The fitting of diffusion images follows the pixel-wise Stejskal-Tanner equation [14]:

Sk = S0e
−big

T
k Dgk , (1)

where Sk is the diffusion images we acquired, S0 is the image intensity with no
diffusion weighting and bi is the diffusion encoding strength. D is a symmetric
3×3 covariance matrix with 6 independent variables (Fig. 1). gk is the diffusion
encoding direction.

We hypothesize that generating variables in the diffusion covariance matrix
concurrently with motion correction will enhance the accuracy of the final tensor
fitting. Therefore, we formulate the problem as follows:
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Table 1. Ablation studies over the whole test set. R2 and RMSE are shown in (mean
± standard deviation). NE% is shown in (median with 25% and 75% quantiles). SX
stands for the modules in solution X.

Model R2 of HAG(↑) RMSE of HAG(↓) NE%(↓)
(S2.a) S0 constrain 0.894 ± 0.056 6.876 ± 3.605 1.283 (0.477, 3.259)
(S2.b) No attention 0.894 ± 0.057 6.978 ± 3.673 1.492 (0.695, 4.154)
(S3.a) No denoising 0.898 ± 0.054 6.556 ± 3.407 1.301 (0.690, 3.731)
(S3.b) MSE loss 0.890 ± 0.058 7.217 ± 3.699 1.761 (0.750, 4.585)
(S4.a) Pure seg 0.891 ± 0.057 7.213 ± 3.704 1.661 (0.766, 4.016)
(S4.b) +Seg 0.896 ± 0.055 6.758 ± 3.567 1.301 (0.818, 4.460)
Proposed 0.903 ± 0.053 6.542 ± 3.423 1.244 (0.519, 3.424)

Φ̂,D = argmin
Φ,D

∑
i∈k

Lmi(ϕi ◦ Si − S
−big

T
i Dgi

0 ), (2)

where ϕi is the ith displacement field corresponding to the frame Si. Specifically,
S0 is an extra constraint we put into the network. Six independent variables
which stand for the upper triangular part of the diffusion covariance matrix in
Fig. 2 can be derived from the network.

2.2 Pipeline

Solution 1 Reference choice: Groupwise-based registration with im-
plicit template In our group-wise registration approach using an implicit tem-
plate, crucial for DT-CMR where one slice is sampled Nd × Nrep times (Nd:
diffusion frames, Nrep: repetitions), we tackle the challenge of selecting an ap-
propriate fixed reference for deformable registration. The implicit template is
constructed in Tucker form [16] as:

A = Φxy · Φdynamic, (3)

with ΦR
xy representing the image basis matrix and ΦR

dynamic denoting the dynamic
factor tensor (Nd×Nrep), where R specifies the basis matrix rank. By setting R to
1, we generate a first-rank averaged projection tensor A1 = Φ1

xy ·Φ1
dynamic, effec-

tively separating respiratory and local deformations [10]. This template guides a
b-spline registration network with diffeomorphic transformations to align frames
and compute displacement fields [12].

Solution 2 Diffusion conservation: Tensor-embedded contrast conser-
vation To conserve the textural information from diffusion encoding directions,
we propose a tensor-embedded generation branch creating pseudo diffusion im-
ages with same anatomy but different contrast to guide the groupwise registra-
tion. Following Eq. 1, we use the averaged 1st−rank projection of tensor of b0
frames as the S0 . We avoid the blurring induced by misalignment of the original
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input images and take this as a further constraint. Using A1 as the input, six in-
dependent variables from the diffusion covariance matrix in Fig. 2 are generated
from an encoder-decoder structure. The variables were then combined with S0

in an exponential way following Eq. 1 to generate pseudo-diffusion images. Be-
sides, a cross-attention module is built between the generation and registration
network in a forward manner for better connection.

Solution 3 Least-squares fitting: Refined loss on diffusion encoding
information To mitigate the impact of low SNR in diffusion images, which
can adversely affect metrics and lead to significant deformation, we employ a
strategy of extracting different components from Φdynamic across varied diffusion
encodings and repetitions for initial denoising. This process is enhanced with an
auto-correlation function to better preserve diffusion contrast [7]. Additionally, to
address the challenges posed by substantial intensity fluctuations from motion
or acquisition issues, and to align with the principles of least-squares tensor
fitting, we opt for a differentiable mutual information loss Lmi as our primary
loss metric, diverging from the traditional mean squared error approach used in
previous studies [8, 17].The loss function consists of three parts:

Ltotal = λ1 · Lmi + λ2 · Lsmooth + λ3 · Lperceptual, (4)

in which Lmi is defined on the image domain:

Lmi =
∑
i∈k

H(S
−big

T
i Dgi

0 ) +H(ϕi ◦ Si)

H(S
−bigT

i Dgi

0 , ϕi ◦ Si)
, (5)

where H(S
−big

T
i Dgi

0 ) and H(ϕi ◦ Si) represent the marginal entropies of the
generated and the warped diffusion images and H(S

−big
T
i Dgi

0 , ϕi ◦ Si) represent
the joint entropy. Using a Gaussian-based Parzen window [15, 12] instead of
a rectangular window to calculate the intensity bins, we make the main loss
differentiable and easy to back propagate.

Lsmooth is the L2 norm of the spatial gradient of the displacement field,

Lsmooth =
∑
i∈k

∑
p∈Ω

∥∇ϕi(p)∥2, (6)

where Ω is the 2-dimensional image area in our case.
Furthermore, we incorporate a perceptual loss, Lperceptual, to supervise the

high-level feature similarity between pseudo-diffusion images and warped images,
utilizing layers from the VGG16 model [13].

Solution 4 Contour guidance: Optional semi-supervised version A pre-
trained segmentation network [4] can be utilized to provide the mask of the
myocardium as an auxiliary loss in a semi-supervised manner. We also tried to
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Fig. 3. The quantification of ablation studies with NE% listed on the right bottom,
R2 and RMSE of HAG and displacement field along rows. SX stands for the solution
X. S2.a stands for using MSE on S0 as constraint; S2.b is without attention module;
S3.a takes noisy images as input; S3.b uses MSE as the main loss; S4.a just uses DICE
on the segmented label to supervise; S4.b combines the segmentation DICE and the
mutual information loss together. The unfavourable drastic deformation is pointed out
by red arrows.

add a soft DICE between mask of the the intrinsic template of S0 and the warped
masks of different frames.

Notably, the displacement field ϕi inferred by the denoised input is applied
on the original noisy frame in the following inference stage for a better and more
robust fitting.

2.3 Datasets

Two datasets were collected from 20 healthy volunteers using Stimulated Echo
Acquisition Mode (STEAM) based Echo Planar Imaging (EPI) at 3T and 1.5T
scanners. Dataset 1 comprises images at end-systole (ES) and end-diastole (ED)
with a spatial resolution of 2.8 x 2.8 x 8.0 mm³, including 10 repetitions with b0
and six high b-value encodings at b = 0 (b0), 150 (b150) and 600 (b600) s/mm 2,
resulting in 20 (subjects) × 2 (magnetic field) × 2(ES/ED) =80 cases. Dataset
2 includes two short-axis slices (apical and basal) at ES, utilizing STEAM-EPI
at 3T with twelve repetitions for b0, b150 and b600. A number of 20 (subjects) × 2
(slices) = 40 cases are acquired after employing diaphragm positioning to reduce
drastic through-plane motion artifacts. Hence, we got 120 cases in total. ECG-
triggered breath-holding was applied during acquisitions. Data segmentation was
performed using a pre-trained network [4], categorizing cases by segmentation
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quality. Eighty cases with superior segmentation were allocated into training
(80%) and validation (20%) subsets, while the remaining 40, characterized by
lower segmentation quality, were designated for testing. This setup aimed to
challenge and evaluate model performance primarily on data with lower image
quality.

2.4 Experimental Details

Traditional rigid [6] and deformable registration method [9] were used for com-
parison. Two state-of-the-art (SOTA) deep learning based registration methods,
namely MIDIR [12] and Transmorph [1] were also compared.

Ablation studies were performed to examine the various modules in our pro-
posed method: (S2.a) MSE loss on S0 instead of directly using the averaged
projection of b0, (S2.b) no cross-attention module, (S3.a) noisy frames as input,
(S3.b) MSE as loss, segmentation label incorporation with (S4.a) purely soft
DICE on segmentation labels, (S4.b) combination of differentiable MI on the
frames and soft DICE on the segmented labels, and the proposed. Details about
the implementation and hyper parameter settings can be found in supplementary
material.

2.5 Evaluation Methods

We compacted all the frames along a third dimension to examine the alignment
of image stack. Besides, two extra quantification were applied as in Fig. 2:

Helix Angle Gradient (HAG) Line Profile In healthy volunteers, the helix
angle (HA) reveals the alignment of cardiomyocytes, which ideally should be
linear from the endocardium to the epicardium, as shown in Fig. 2. The mean
HAG was calculated as degree of the alignment over the percentage of myocardial
wall thickness. Radial line profiles with linear regression showing negative slopes
and a fitting R2 greater than 0.3 were included for analysis [5]. The R2 values
and RMSE of these fittings were evaluated.

Percentage of Negative Eigenvalues (NE%) As illustrated in Fig. 2, a
rank-2 diffusion tensor and its eigenvalues were calculated for each pixel of the
diffusion dataset [3] These three eigenvalues indicate the magnitude of water
molecule movement, which should ideally all be positive. However, noise, residual
motion or misregistration artifacts may increase the NE%. We calculated the
NE% in the left ventricular myocardium.

3 Results

3.1 Ablation and Comparison Study

In our study, we quantitatively compared various modules’ performance on a
representative subject, as shown in Fig.3. The proposed method, relying exclu-
sively on the loss of generated frames, surpassed others, demonstrated alongside
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Fig. 4. The result of tensors of different comparison studies on one representative
subject. NE%, image stack, R2 and RMSE of HAG are shown. Differences along the
edge of HA are highlighted by red arrows.

Table 2. Comparison studies over the whole test dataset. R2 and RMSE are shown in
(mean ± standard deviation). NE% is shown in (median with 25% and 75% quantiles)

Model R2 of HAG(↑) RMSE of HAG(↓) NE%(↓)
Rigid 0.873 ± 0.061 7.583 ± 3.739 1.251 (0.546, 4.078)
Deformable 0.881 ± 0.053 7.502 ± 3.544 1.459 (0.439, 4.136)
MIDIR 0.889 ± 0.059 7.266 ± 3.740 1.727(0.790, 4.835)
Transmorph 0.892 ± 0.057 7.144 ± 3.649 1.703 (0.508, 4.259)
Proposed 0.903 ± 0.053 6.542 ± 3.423 1.244 (0.519, 3.424)

an example displacement field. Issues such as drastic myocardium deformation,
highlighted by red arrows, were observed with strategies like applying MSE to
S0, using noisy frames as inputs, omitting the attention module, employing MSE
loss, and integrating segmentation labels. These findings are further substanti-
ated in Table 1.

Additionally, our approach was benchmarked against conventional and deep-
learning based techniques, detailed in Fig. 4 and Table 2. It consistently outper-
formed competing methods, showcasing the lowest percentage of negative eigen-
values, highest R2, and minimal RMSE for helix angle gradient linear fitting,
indicating superior performance across metrics for a representative subject.
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4 Conclusion and Discussion

In this study, we introduce a groupwise registration method for DT-CMR to
address challenges posed by multiple repetitions, diverse contrasts, and noise.
An implicit template segregates respiratory and cardiac motions for group-wise
frame registration. Our tensor-embedded network generates pseudo frames to
differentiate diffusion contrasts, while a novel differentiable mutual information
loss targets diffusion encoding to correct residual motions.

We validated our method with two new metrics, physical and clinical, demon-
strating its superiority over traditional and deep learning-based registration
methods. Our approach significantly reduces negative eigenvalues and improves
the helix angle gradient in healthy volunteers. However, the proposed clinical
biomarker of the helix angle gradient line profile is currently applicable only to
healthy volunteers due to the linear features of cardiomyocytes in these indi-
viduals. To address this limitation, we plan to include additional metrics and
expand our study to patients with various diseases in future research. This will
enhance the applicability and robustness of our method.
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